Solve for x (complex solution)
x=\frac{112+7\sqrt{199}i}{65}\approx 1.723076923+1.519186952i
x=\frac{-7\sqrt{199}i+112}{65}\approx 1.723076923-1.519186952i
Graph
Share
Copied to clipboard
x^{2}+\frac{16}{49}x^{2}-\frac{32}{7}x+16=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{4}{7}x+4\right)^{2}.
\frac{65}{49}x^{2}-\frac{32}{7}x+16=9
Combine x^{2} and \frac{16}{49}x^{2} to get \frac{65}{49}x^{2}.
\frac{65}{49}x^{2}-\frac{32}{7}x+16-9=0
Subtract 9 from both sides.
\frac{65}{49}x^{2}-\frac{32}{7}x+7=0
Subtract 9 from 16 to get 7.
x=\frac{-\left(-\frac{32}{7}\right)±\sqrt{\left(-\frac{32}{7}\right)^{2}-4\times \frac{65}{49}\times 7}}{2\times \frac{65}{49}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{65}{49} for a, -\frac{32}{7} for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{32}{7}\right)±\sqrt{\frac{1024}{49}-4\times \frac{65}{49}\times 7}}{2\times \frac{65}{49}}
Square -\frac{32}{7} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{32}{7}\right)±\sqrt{\frac{1024}{49}-\frac{260}{49}\times 7}}{2\times \frac{65}{49}}
Multiply -4 times \frac{65}{49}.
x=\frac{-\left(-\frac{32}{7}\right)±\sqrt{\frac{1024}{49}-\frac{260}{7}}}{2\times \frac{65}{49}}
Multiply -\frac{260}{49} times 7.
x=\frac{-\left(-\frac{32}{7}\right)±\sqrt{-\frac{796}{49}}}{2\times \frac{65}{49}}
Add \frac{1024}{49} to -\frac{260}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{32}{7}\right)±\frac{2\sqrt{199}i}{7}}{2\times \frac{65}{49}}
Take the square root of -\frac{796}{49}.
x=\frac{\frac{32}{7}±\frac{2\sqrt{199}i}{7}}{2\times \frac{65}{49}}
The opposite of -\frac{32}{7} is \frac{32}{7}.
x=\frac{\frac{32}{7}±\frac{2\sqrt{199}i}{7}}{\frac{130}{49}}
Multiply 2 times \frac{65}{49}.
x=\frac{32+2\sqrt{199}i}{\frac{130}{49}\times 7}
Now solve the equation x=\frac{\frac{32}{7}±\frac{2\sqrt{199}i}{7}}{\frac{130}{49}} when ± is plus. Add \frac{32}{7} to \frac{2i\sqrt{199}}{7}.
x=\frac{112+7\sqrt{199}i}{65}
Divide \frac{32+2i\sqrt{199}}{7} by \frac{130}{49} by multiplying \frac{32+2i\sqrt{199}}{7} by the reciprocal of \frac{130}{49}.
x=\frac{-2\sqrt{199}i+32}{\frac{130}{49}\times 7}
Now solve the equation x=\frac{\frac{32}{7}±\frac{2\sqrt{199}i}{7}}{\frac{130}{49}} when ± is minus. Subtract \frac{2i\sqrt{199}}{7} from \frac{32}{7}.
x=\frac{-7\sqrt{199}i+112}{65}
Divide \frac{32-2i\sqrt{199}}{7} by \frac{130}{49} by multiplying \frac{32-2i\sqrt{199}}{7} by the reciprocal of \frac{130}{49}.
x=\frac{112+7\sqrt{199}i}{65} x=\frac{-7\sqrt{199}i+112}{65}
The equation is now solved.
x^{2}+\frac{16}{49}x^{2}-\frac{32}{7}x+16=9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-\frac{4}{7}x+4\right)^{2}.
\frac{65}{49}x^{2}-\frac{32}{7}x+16=9
Combine x^{2} and \frac{16}{49}x^{2} to get \frac{65}{49}x^{2}.
\frac{65}{49}x^{2}-\frac{32}{7}x=9-16
Subtract 16 from both sides.
\frac{65}{49}x^{2}-\frac{32}{7}x=-7
Subtract 16 from 9 to get -7.
\frac{\frac{65}{49}x^{2}-\frac{32}{7}x}{\frac{65}{49}}=-\frac{7}{\frac{65}{49}}
Divide both sides of the equation by \frac{65}{49}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{32}{7}}{\frac{65}{49}}\right)x=-\frac{7}{\frac{65}{49}}
Dividing by \frac{65}{49} undoes the multiplication by \frac{65}{49}.
x^{2}-\frac{224}{65}x=-\frac{7}{\frac{65}{49}}
Divide -\frac{32}{7} by \frac{65}{49} by multiplying -\frac{32}{7} by the reciprocal of \frac{65}{49}.
x^{2}-\frac{224}{65}x=-\frac{343}{65}
Divide -7 by \frac{65}{49} by multiplying -7 by the reciprocal of \frac{65}{49}.
x^{2}-\frac{224}{65}x+\left(-\frac{112}{65}\right)^{2}=-\frac{343}{65}+\left(-\frac{112}{65}\right)^{2}
Divide -\frac{224}{65}, the coefficient of the x term, by 2 to get -\frac{112}{65}. Then add the square of -\frac{112}{65} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{224}{65}x+\frac{12544}{4225}=-\frac{343}{65}+\frac{12544}{4225}
Square -\frac{112}{65} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{224}{65}x+\frac{12544}{4225}=-\frac{9751}{4225}
Add -\frac{343}{65} to \frac{12544}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{112}{65}\right)^{2}=-\frac{9751}{4225}
Factor x^{2}-\frac{224}{65}x+\frac{12544}{4225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{112}{65}\right)^{2}}=\sqrt{-\frac{9751}{4225}}
Take the square root of both sides of the equation.
x-\frac{112}{65}=\frac{7\sqrt{199}i}{65} x-\frac{112}{65}=-\frac{7\sqrt{199}i}{65}
Simplify.
x=\frac{112+7\sqrt{199}i}{65} x=\frac{-7\sqrt{199}i+112}{65}
Add \frac{112}{65} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}