Evaluate
2x^{2}-\frac{4\sqrt{3}x}{3}+\frac{8\sqrt{3}}{3}-4
Expand
2x^{2}-\frac{4\sqrt{3}x}{3}+\frac{8\sqrt{3}}{3}-4
Graph
Share
Copied to clipboard
x^{2}+\left(\frac{2}{3}\sqrt{3}-x\right)^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Combine \sqrt{3} and -\frac{\sqrt{3}}{3} to get \frac{2}{3}\sqrt{3}.
x^{2}+\frac{4}{9}\left(\sqrt{3}\right)^{2}-\frac{4}{3}\sqrt{3}x+x^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{3}\sqrt{3}-x\right)^{2}.
x^{2}+\frac{4}{9}\times 3-\frac{4}{3}\sqrt{3}x+x^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
The square of \sqrt{3} is 3.
x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x+x^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Multiply \frac{4}{9} and 3 to get \frac{4}{3}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(\frac{2\times 3}{3}-\frac{2\sqrt{3}}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{3}{3}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(\frac{2\times 3-2\sqrt{3}}{3}\right)^{2}
Since \frac{2\times 3}{3} and \frac{2\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(\frac{6-2\sqrt{3}}{3}\right)^{2}
Do the multiplications in 2\times 3-2\sqrt{3}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{\left(6-2\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{6-2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{36-24\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-2\sqrt{3}\right)^{2}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{36-24\sqrt{3}+4\times 3}{3^{2}}
The square of \sqrt{3} is 3.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{36-24\sqrt{3}+12}{3^{2}}
Multiply 4 and 3 to get 12.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{48-24\sqrt{3}}{3^{2}}
Add 36 and 12 to get 48.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{48-24\sqrt{3}}{9}
Calculate 3 to the power of 2 and get 9.
2x^{2}+\frac{4\times 3}{9}-\frac{4}{3}\sqrt{3}x-\frac{48-24\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 9 is 9. Multiply \frac{4}{3} times \frac{3}{3}.
2x^{2}+\frac{4\times 3-\left(48-24\sqrt{3}\right)}{9}-\frac{4}{3}\sqrt{3}x
Since \frac{4\times 3}{9} and \frac{48-24\sqrt{3}}{9} have the same denominator, subtract them by subtracting their numerators.
2x^{2}+\frac{12-48+24\sqrt{3}}{9}-\frac{4}{3}\sqrt{3}x
Do the multiplications in 4\times 3-\left(48-24\sqrt{3}\right).
2x^{2}+\frac{-36+24\sqrt{3}}{9}-\frac{4}{3}\sqrt{3}x
Do the calculations in 12-48+24\sqrt{3}.
x^{2}+\left(\frac{2}{3}\sqrt{3}-x\right)^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Combine \sqrt{3} and -\frac{\sqrt{3}}{3} to get \frac{2}{3}\sqrt{3}.
x^{2}+\frac{4}{9}\left(\sqrt{3}\right)^{2}-\frac{4}{3}\sqrt{3}x+x^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{3}\sqrt{3}-x\right)^{2}.
x^{2}+\frac{4}{9}\times 3-\frac{4}{3}\sqrt{3}x+x^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
The square of \sqrt{3} is 3.
x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x+x^{2}-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Multiply \frac{4}{9} and 3 to get \frac{4}{3}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(2-\frac{2\sqrt{3}}{3}\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(\frac{2\times 3}{3}-\frac{2\sqrt{3}}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{3}{3}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(\frac{2\times 3-2\sqrt{3}}{3}\right)^{2}
Since \frac{2\times 3}{3} and \frac{2\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\left(\frac{6-2\sqrt{3}}{3}\right)^{2}
Do the multiplications in 2\times 3-2\sqrt{3}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{\left(6-2\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{6-2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{36-24\sqrt{3}+4\left(\sqrt{3}\right)^{2}}{3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-2\sqrt{3}\right)^{2}.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{36-24\sqrt{3}+4\times 3}{3^{2}}
The square of \sqrt{3} is 3.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{36-24\sqrt{3}+12}{3^{2}}
Multiply 4 and 3 to get 12.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{48-24\sqrt{3}}{3^{2}}
Add 36 and 12 to get 48.
2x^{2}+\frac{4}{3}-\frac{4}{3}\sqrt{3}x-\frac{48-24\sqrt{3}}{9}
Calculate 3 to the power of 2 and get 9.
2x^{2}+\frac{4\times 3}{9}-\frac{4}{3}\sqrt{3}x-\frac{48-24\sqrt{3}}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 9 is 9. Multiply \frac{4}{3} times \frac{3}{3}.
2x^{2}+\frac{4\times 3-\left(48-24\sqrt{3}\right)}{9}-\frac{4}{3}\sqrt{3}x
Since \frac{4\times 3}{9} and \frac{48-24\sqrt{3}}{9} have the same denominator, subtract them by subtracting their numerators.
2x^{2}+\frac{12-48+24\sqrt{3}}{9}-\frac{4}{3}\sqrt{3}x
Do the multiplications in 4\times 3-\left(48-24\sqrt{3}\right).
2x^{2}+\frac{-36+24\sqrt{3}}{9}-\frac{4}{3}\sqrt{3}x
Do the calculations in 12-48+24\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}