Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+2=\left(2x\right)^{2}
The square of \sqrt{2} is 2.
x^{2}+2=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+2=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+2-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+2=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-2}{-3}
Divide both sides by -3.
x^{2}=\frac{2}{3}
Fraction \frac{-2}{-3} can be simplified to \frac{2}{3} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{6}}{3} x=-\frac{\sqrt{6}}{3}
Take the square root of both sides of the equation.
x^{2}+2=\left(2x\right)^{2}
The square of \sqrt{2} is 2.
x^{2}+2=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+2=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+2-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+2=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-3\right)\times 2}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 0 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-3\right)\times 2}}{2\left(-3\right)}
Square 0.
x=\frac{0±\sqrt{12\times 2}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{0±\sqrt{24}}{2\left(-3\right)}
Multiply 12 times 2.
x=\frac{0±2\sqrt{6}}{2\left(-3\right)}
Take the square root of 24.
x=\frac{0±2\sqrt{6}}{-6}
Multiply 2 times -3.
x=-\frac{\sqrt{6}}{3}
Now solve the equation x=\frac{0±2\sqrt{6}}{-6} when ± is plus.
x=\frac{\sqrt{6}}{3}
Now solve the equation x=\frac{0±2\sqrt{6}}{-6} when ± is minus.
x=-\frac{\sqrt{6}}{3} x=\frac{\sqrt{6}}{3}
The equation is now solved.