Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{1}{\sqrt{2}}x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{\sqrt{2}}±\sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \left(\sqrt{2}\right)^{-1} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{\sqrt{2}}±\sqrt{\frac{1}{2}-4}}{2}
Square \left(\sqrt{2}\right)^{-1}.
x=\frac{-\frac{1}{\sqrt{2}}±\sqrt{-\frac{7}{2}}}{2}
Add \frac{1}{2} to -4.
x=\frac{-\frac{1}{\sqrt{2}}±\frac{\sqrt{14}i}{2}}{2}
Take the square root of -\frac{7}{2}.
x=\frac{-\sqrt{2}+\sqrt{14}i}{2\times 2}
Now solve the equation x=\frac{-\frac{\sqrt{2}}{2}±\frac{\sqrt{14}i}{2}}{2} when ± is plus. Add -\frac{\sqrt{2}}{2} to \frac{i\sqrt{14}}{2}.
x=\frac{-\sqrt{2}+\sqrt{14}i}{4}
Divide \frac{i\sqrt{14}-\sqrt{2}}{2} by 2.
x=\frac{-\sqrt{14}i-\sqrt{2}}{2\times 2}
Now solve the equation x=\frac{-\frac{\sqrt{2}}{2}±\frac{\sqrt{14}i}{2}}{2} when ± is minus. Subtract \frac{i\sqrt{14}}{2} from -\frac{\sqrt{2}}{2}.
x=\frac{-\sqrt{14}i-\sqrt{2}}{4}
Divide \frac{-i\sqrt{14}-\sqrt{2}}{2} by 2.
x=\frac{-\sqrt{2}+\sqrt{14}i}{4} x=\frac{-\sqrt{14}i-\sqrt{2}}{4}
The equation is now solved.
x^{2}+\frac{1}{\sqrt{2}}x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{1}{\sqrt{2}}x+1-1=-1
Subtract 1 from both sides of the equation.
x^{2}+\frac{1}{\sqrt{2}}x=-1
Subtracting 1 from itself leaves 0.
x^{2}+\frac{\sqrt{2}}{2}x+\left(\frac{\sqrt{2}}{4}\right)^{2}=-1+\left(\frac{\sqrt{2}}{4}\right)^{2}
Divide \frac{\sqrt{2}}{2}, the coefficient of the x term, by 2 to get \frac{\sqrt{2}}{4}. Then add the square of \frac{\sqrt{2}}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{\sqrt{2}}{2}x+\frac{1}{8}=-1+\frac{1}{8}
Square \frac{\sqrt{2}}{4}.
x^{2}+\frac{\sqrt{2}}{2}x+\frac{1}{8}=-\frac{7}{8}
Add -1 to \frac{1}{8}.
\left(x+\frac{\sqrt{2}}{4}\right)^{2}=-\frac{7}{8}
Factor x^{2}+\frac{\sqrt{2}}{2}x+\frac{1}{8}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{\sqrt{2}}{4}\right)^{2}}=\sqrt{-\frac{7}{8}}
Take the square root of both sides of the equation.
x+\frac{\sqrt{2}}{4}=\frac{\sqrt{14}i}{4} x+\frac{\sqrt{2}}{4}=-\frac{\sqrt{14}i}{4}
Simplify.
x=\frac{-\sqrt{2}+\sqrt{14}i}{4} x=\frac{-\sqrt{14}i-\sqrt{2}}{4}
Subtract \frac{\sqrt{2}}{4} from both sides of the equation.