Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+\frac{7}{2}x=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+\frac{7}{2}x-2=2-2
Subtract 2 from both sides of the equation.
x^{2}+\frac{7}{2}x-2=0
Subtracting 2 from itself leaves 0.
x=\frac{-\frac{7}{2}±\sqrt{\left(\frac{7}{2}\right)^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, \frac{7}{2} for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}-4\left(-2\right)}}{2}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{2}±\sqrt{\frac{49}{4}+8}}{2}
Multiply -4 times -2.
x=\frac{-\frac{7}{2}±\sqrt{\frac{81}{4}}}{2}
Add \frac{49}{4} to 8.
x=\frac{-\frac{7}{2}±\frac{9}{2}}{2}
Take the square root of \frac{81}{4}.
x=\frac{1}{2}
Now solve the equation x=\frac{-\frac{7}{2}±\frac{9}{2}}{2} when ± is plus. Add -\frac{7}{2} to \frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{8}{2}
Now solve the equation x=\frac{-\frac{7}{2}±\frac{9}{2}}{2} when ± is minus. Subtract \frac{9}{2} from -\frac{7}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-4
Divide -8 by 2.
x=\frac{1}{2} x=-4
The equation is now solved.
x^{2}+\frac{7}{2}x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=2+\left(\frac{7}{4}\right)^{2}
Divide \frac{7}{2}, the coefficient of the x term, by 2 to get \frac{7}{4}. Then add the square of \frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{2}x+\frac{49}{16}=2+\frac{49}{16}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{81}{16}
Add 2 to \frac{49}{16}.
\left(x+\frac{7}{4}\right)^{2}=\frac{81}{16}
Factor x^{2}+\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Take the square root of both sides of the equation.
x+\frac{7}{4}=\frac{9}{4} x+\frac{7}{4}=-\frac{9}{4}
Simplify.
x=\frac{1}{2} x=-4
Subtract \frac{7}{4} from both sides of the equation.