Solve for x
x = -\frac{664}{117} = -5\frac{79}{117} \approx -5.675213675
x=0
Graph
Share
Copied to clipboard
117x^{2}+9\times 16x+13\times 40x=0
Multiply both sides of the equation by 117, the least common multiple of 13,9.
117x^{2}+144x+13\times 40x=0
Multiply 9 and 16 to get 144.
117x^{2}+144x+520x=0
Multiply 13 and 40 to get 520.
117x^{2}+664x=0
Combine 144x and 520x to get 664x.
x\left(117x+664\right)=0
Factor out x.
x=0 x=-\frac{664}{117}
To find equation solutions, solve x=0 and 117x+664=0.
117x^{2}+9\times 16x+13\times 40x=0
Multiply both sides of the equation by 117, the least common multiple of 13,9.
117x^{2}+144x+13\times 40x=0
Multiply 9 and 16 to get 144.
117x^{2}+144x+520x=0
Multiply 13 and 40 to get 520.
117x^{2}+664x=0
Combine 144x and 520x to get 664x.
x=\frac{-664±\sqrt{664^{2}}}{2\times 117}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 117 for a, 664 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-664±664}{2\times 117}
Take the square root of 664^{2}.
x=\frac{-664±664}{234}
Multiply 2 times 117.
x=\frac{0}{234}
Now solve the equation x=\frac{-664±664}{234} when ± is plus. Add -664 to 664.
x=0
Divide 0 by 234.
x=-\frac{1328}{234}
Now solve the equation x=\frac{-664±664}{234} when ± is minus. Subtract 664 from -664.
x=-\frac{664}{117}
Reduce the fraction \frac{-1328}{234} to lowest terms by extracting and canceling out 2.
x=0 x=-\frac{664}{117}
The equation is now solved.
117x^{2}+9\times 16x+13\times 40x=0
Multiply both sides of the equation by 117, the least common multiple of 13,9.
117x^{2}+144x+13\times 40x=0
Multiply 9 and 16 to get 144.
117x^{2}+144x+520x=0
Multiply 13 and 40 to get 520.
117x^{2}+664x=0
Combine 144x and 520x to get 664x.
\frac{117x^{2}+664x}{117}=\frac{0}{117}
Divide both sides by 117.
x^{2}+\frac{664}{117}x=\frac{0}{117}
Dividing by 117 undoes the multiplication by 117.
x^{2}+\frac{664}{117}x=0
Divide 0 by 117.
x^{2}+\frac{664}{117}x+\left(\frac{332}{117}\right)^{2}=\left(\frac{332}{117}\right)^{2}
Divide \frac{664}{117}, the coefficient of the x term, by 2 to get \frac{332}{117}. Then add the square of \frac{332}{117} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{664}{117}x+\frac{110224}{13689}=\frac{110224}{13689}
Square \frac{332}{117} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{332}{117}\right)^{2}=\frac{110224}{13689}
Factor x^{2}+\frac{664}{117}x+\frac{110224}{13689}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{332}{117}\right)^{2}}=\sqrt{\frac{110224}{13689}}
Take the square root of both sides of the equation.
x+\frac{332}{117}=\frac{332}{117} x+\frac{332}{117}=-\frac{332}{117}
Simplify.
x=0 x=-\frac{664}{117}
Subtract \frac{332}{117} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}