Solve for α
\alpha =-\frac{x^{2}+1}{x+4}
x\neq -4
Solve for x (complex solution)
x=\frac{\sqrt{\alpha ^{2}-16\alpha -4}-\alpha }{2}
x=\frac{-\sqrt{\alpha ^{2}-16\alpha -4}-\alpha }{2}
Solve for x
x=\frac{\sqrt{\alpha ^{2}-16\alpha -4}-\alpha }{2}
x=\frac{-\sqrt{\alpha ^{2}-16\alpha -4}-\alpha }{2}\text{, }\alpha \geq 2\sqrt{17}+8\text{ or }\alpha \leq 8-2\sqrt{17}
Graph
Share
Copied to clipboard
\alpha x+4\alpha +1=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
\alpha x+4\alpha =-x^{2}-1
Subtract 1 from both sides.
\left(x+4\right)\alpha =-x^{2}-1
Combine all terms containing \alpha .
\frac{\left(x+4\right)\alpha }{x+4}=\frac{-x^{2}-1}{x+4}
Divide both sides by x+4.
\alpha =\frac{-x^{2}-1}{x+4}
Dividing by x+4 undoes the multiplication by x+4.
\alpha =-\frac{x^{2}+1}{x+4}
Divide -x^{2}-1 by x+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}