Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(x^{6}-y^{3}\right)\left(x^{6}+y^{3}\right)
Rewrite x^{12}-y^{6} as \left(x^{6}\right)^{2}-\left(y^{3}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(x^{2}-y\right)\left(x^{4}+y^{2}+yx^{2}\right)
Consider x^{6}-y^{3}. Rewrite x^{6}-y^{3} as \left(x^{2}\right)^{3}-y^{3}. The difference of cubes can be factored using the rule: a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right).
\left(x^{2}+y\right)\left(x^{4}+y^{2}-yx^{2}\right)
Consider x^{6}+y^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(x^{2}-y\right)\left(x^{2}+y\right)\left(x^{4}+y^{2}-yx^{2}\right)\left(x^{4}+y^{2}+yx^{2}\right)
Rewrite the complete factored expression.