Solve for x
x = \frac{\sqrt{2343021} + 1263}{2} \approx 1396.84649016
x=\frac{1263-\sqrt{2343021}}{2}\approx -133.84649016
Graph
Quiz
Quadratic Equation
5 problems similar to:
x = 8903 \quad \frac { 1 + 2 + 3 + 4 + 5 + 6 } { x - 1263 }
Share
Copied to clipboard
x=8903\times \frac{3+3+4+5+6}{x-1263}
Add 1 and 2 to get 3.
x=8903\times \frac{6+4+5+6}{x-1263}
Add 3 and 3 to get 6.
x=8903\times \frac{10+5+6}{x-1263}
Add 6 and 4 to get 10.
x=8903\times \frac{15+6}{x-1263}
Add 10 and 5 to get 15.
x=8903\times \frac{21}{x-1263}
Add 15 and 6 to get 21.
x=\frac{8903\times 21}{x-1263}
Express 8903\times \frac{21}{x-1263} as a single fraction.
x=\frac{186963}{x-1263}
Multiply 8903 and 21 to get 186963.
x-\frac{186963}{x-1263}=0
Subtract \frac{186963}{x-1263} from both sides.
\frac{x\left(x-1263\right)}{x-1263}-\frac{186963}{x-1263}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1263}{x-1263}.
\frac{x\left(x-1263\right)-186963}{x-1263}=0
Since \frac{x\left(x-1263\right)}{x-1263} and \frac{186963}{x-1263} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-1263x-186963}{x-1263}=0
Do the multiplications in x\left(x-1263\right)-186963.
x^{2}-1263x-186963=0
Variable x cannot be equal to 1263 since division by zero is not defined. Multiply both sides of the equation by x-1263.
x=\frac{-\left(-1263\right)±\sqrt{\left(-1263\right)^{2}-4\left(-186963\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1263 for b, and -186963 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1263\right)±\sqrt{1595169-4\left(-186963\right)}}{2}
Square -1263.
x=\frac{-\left(-1263\right)±\sqrt{1595169+747852}}{2}
Multiply -4 times -186963.
x=\frac{-\left(-1263\right)±\sqrt{2343021}}{2}
Add 1595169 to 747852.
x=\frac{1263±\sqrt{2343021}}{2}
The opposite of -1263 is 1263.
x=\frac{\sqrt{2343021}+1263}{2}
Now solve the equation x=\frac{1263±\sqrt{2343021}}{2} when ± is plus. Add 1263 to \sqrt{2343021}.
x=\frac{1263-\sqrt{2343021}}{2}
Now solve the equation x=\frac{1263±\sqrt{2343021}}{2} when ± is minus. Subtract \sqrt{2343021} from 1263.
x=\frac{\sqrt{2343021}+1263}{2} x=\frac{1263-\sqrt{2343021}}{2}
The equation is now solved.
x=8903\times \frac{3+3+4+5+6}{x-1263}
Add 1 and 2 to get 3.
x=8903\times \frac{6+4+5+6}{x-1263}
Add 3 and 3 to get 6.
x=8903\times \frac{10+5+6}{x-1263}
Add 6 and 4 to get 10.
x=8903\times \frac{15+6}{x-1263}
Add 10 and 5 to get 15.
x=8903\times \frac{21}{x-1263}
Add 15 and 6 to get 21.
x=\frac{8903\times 21}{x-1263}
Express 8903\times \frac{21}{x-1263} as a single fraction.
x=\frac{186963}{x-1263}
Multiply 8903 and 21 to get 186963.
x-\frac{186963}{x-1263}=0
Subtract \frac{186963}{x-1263} from both sides.
\frac{x\left(x-1263\right)}{x-1263}-\frac{186963}{x-1263}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x-1263}{x-1263}.
\frac{x\left(x-1263\right)-186963}{x-1263}=0
Since \frac{x\left(x-1263\right)}{x-1263} and \frac{186963}{x-1263} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-1263x-186963}{x-1263}=0
Do the multiplications in x\left(x-1263\right)-186963.
x^{2}-1263x-186963=0
Variable x cannot be equal to 1263 since division by zero is not defined. Multiply both sides of the equation by x-1263.
x^{2}-1263x=186963
Add 186963 to both sides. Anything plus zero gives itself.
x^{2}-1263x+\left(-\frac{1263}{2}\right)^{2}=186963+\left(-\frac{1263}{2}\right)^{2}
Divide -1263, the coefficient of the x term, by 2 to get -\frac{1263}{2}. Then add the square of -\frac{1263}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1263x+\frac{1595169}{4}=186963+\frac{1595169}{4}
Square -\frac{1263}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-1263x+\frac{1595169}{4}=\frac{2343021}{4}
Add 186963 to \frac{1595169}{4}.
\left(x-\frac{1263}{2}\right)^{2}=\frac{2343021}{4}
Factor x^{2}-1263x+\frac{1595169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1263}{2}\right)^{2}}=\sqrt{\frac{2343021}{4}}
Take the square root of both sides of the equation.
x-\frac{1263}{2}=\frac{\sqrt{2343021}}{2} x-\frac{1263}{2}=-\frac{\sqrt{2343021}}{2}
Simplify.
x=\frac{\sqrt{2343021}+1263}{2} x=\frac{1263-\sqrt{2343021}}{2}
Add \frac{1263}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}