Solve for x
x=-\frac{1}{2}=-0.5
x=0
Graph
Share
Copied to clipboard
x-2x^{2}=2x
Subtract 2x^{2} from both sides.
x-2x^{2}-2x=0
Subtract 2x from both sides.
-x-2x^{2}=0
Combine x and -2x to get -x.
x\left(-1-2x\right)=0
Factor out x.
x=0 x=-\frac{1}{2}
To find equation solutions, solve x=0 and -1-2x=0.
x-2x^{2}=2x
Subtract 2x^{2} from both sides.
x-2x^{2}-2x=0
Subtract 2x from both sides.
-x-2x^{2}=0
Combine x and -2x to get -x.
-2x^{2}-x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\left(-2\right)}
Take the square root of 1.
x=\frac{1±1}{2\left(-2\right)}
The opposite of -1 is 1.
x=\frac{1±1}{-4}
Multiply 2 times -2.
x=\frac{2}{-4}
Now solve the equation x=\frac{1±1}{-4} when ± is plus. Add 1 to 1.
x=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x=\frac{0}{-4}
Now solve the equation x=\frac{1±1}{-4} when ± is minus. Subtract 1 from 1.
x=0
Divide 0 by -4.
x=-\frac{1}{2} x=0
The equation is now solved.
x-2x^{2}=2x
Subtract 2x^{2} from both sides.
x-2x^{2}-2x=0
Subtract 2x from both sides.
-x-2x^{2}=0
Combine x and -2x to get -x.
-2x^{2}-x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-x}{-2}=\frac{0}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{1}{-2}\right)x=\frac{0}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{1}{2}x=\frac{0}{-2}
Divide -1 by -2.
x^{2}+\frac{1}{2}x=0
Divide 0 by -2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{1}{4} x+\frac{1}{4}=-\frac{1}{4}
Simplify.
x=0 x=-\frac{1}{2}
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}