Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-1=2\sqrt{x+2}
Subtract 1 from both sides of the equation.
\left(x-1\right)^{2}=\left(2\sqrt{x+2}\right)^{2}
Square both sides of the equation.
x^{2}-2x+1=\left(2\sqrt{x+2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=2^{2}\left(\sqrt{x+2}\right)^{2}
Expand \left(2\sqrt{x+2}\right)^{2}.
x^{2}-2x+1=4\left(\sqrt{x+2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-2x+1=4\left(x+2\right)
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x^{2}-2x+1=4x+8
Use the distributive property to multiply 4 by x+2.
x^{2}-2x+1-4x=8
Subtract 4x from both sides.
x^{2}-6x+1=8
Combine -2x and -4x to get -6x.
x^{2}-6x+1-8=0
Subtract 8 from both sides.
x^{2}-6x-7=0
Subtract 8 from 1 to get -7.
a+b=-6 ab=-7
To solve the equation, factor x^{2}-6x-7 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-7 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x-7\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=7 x=-1
To find equation solutions, solve x-7=0 and x+1=0.
7=2\sqrt{7+2}+1
Substitute 7 for x in the equation x=2\sqrt{x+2}+1.
7=7
Simplify. The value x=7 satisfies the equation.
-1=2\sqrt{-1+2}+1
Substitute -1 for x in the equation x=2\sqrt{x+2}+1.
-1=3
Simplify. The value x=-1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=7
Equation x-1=2\sqrt{x+2} has a unique solution.