Solve for x
x=6
Graph
Share
Copied to clipboard
x^{2}=\left(2\sqrt{3x-9}\right)^{2}
Square both sides of the equation.
x^{2}=2^{2}\left(\sqrt{3x-9}\right)^{2}
Expand \left(2\sqrt{3x-9}\right)^{2}.
x^{2}=4\left(\sqrt{3x-9}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}=4\left(3x-9\right)
Calculate \sqrt{3x-9} to the power of 2 and get 3x-9.
x^{2}=12x-36
Use the distributive property to multiply 4 by 3x-9.
x^{2}-12x=-36
Subtract 12x from both sides.
x^{2}-12x+36=0
Add 36 to both sides.
a+b=-12 ab=36
To solve the equation, factor x^{2}-12x+36 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-6 b=-6
The solution is the pair that gives sum -12.
\left(x-6\right)\left(x-6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
\left(x-6\right)^{2}
Rewrite as a binomial square.
x=6
To find equation solution, solve x-6=0.
6=2\sqrt{3\times 6-9}
Substitute 6 for x in the equation x=2\sqrt{3x-9}.
6=6
Simplify. The value x=6 satisfies the equation.
x=6
Equation x=2\sqrt{3x-9} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}