Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+7=17\sqrt{x}
Subtract -7 from both sides of the equation.
\left(x+7\right)^{2}=\left(17\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+14x+49=\left(17\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+7\right)^{2}.
x^{2}+14x+49=17^{2}\left(\sqrt{x}\right)^{2}
Expand \left(17\sqrt{x}\right)^{2}.
x^{2}+14x+49=289\left(\sqrt{x}\right)^{2}
Calculate 17 to the power of 2 and get 289.
x^{2}+14x+49=289x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+14x+49-289x=0
Subtract 289x from both sides.
x^{2}-275x+49=0
Combine 14x and -289x to get -275x.
x=\frac{-\left(-275\right)±\sqrt{\left(-275\right)^{2}-4\times 49}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -275 for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-275\right)±\sqrt{75625-4\times 49}}{2}
Square -275.
x=\frac{-\left(-275\right)±\sqrt{75625-196}}{2}
Multiply -4 times 49.
x=\frac{-\left(-275\right)±\sqrt{75429}}{2}
Add 75625 to -196.
x=\frac{-\left(-275\right)±51\sqrt{29}}{2}
Take the square root of 75429.
x=\frac{275±51\sqrt{29}}{2}
The opposite of -275 is 275.
x=\frac{51\sqrt{29}+275}{2}
Now solve the equation x=\frac{275±51\sqrt{29}}{2} when ± is plus. Add 275 to 51\sqrt{29}.
x=\frac{275-51\sqrt{29}}{2}
Now solve the equation x=\frac{275±51\sqrt{29}}{2} when ± is minus. Subtract 51\sqrt{29} from 275.
x=\frac{51\sqrt{29}+275}{2} x=\frac{275-51\sqrt{29}}{2}
The equation is now solved.
\frac{51\sqrt{29}+275}{2}=17\sqrt{\frac{51\sqrt{29}+275}{2}}-7
Substitute \frac{51\sqrt{29}+275}{2} for x in the equation x=17\sqrt{x}-7.
\frac{51}{2}\times 29^{\frac{1}{2}}+\frac{275}{2}=\frac{275}{2}+\frac{51}{2}\times 29^{\frac{1}{2}}
Simplify. The value x=\frac{51\sqrt{29}+275}{2} satisfies the equation.
\frac{275-51\sqrt{29}}{2}=17\sqrt{\frac{275-51\sqrt{29}}{2}}-7
Substitute \frac{275-51\sqrt{29}}{2} for x in the equation x=17\sqrt{x}-7.
\frac{275}{2}-\frac{51}{2}\times 29^{\frac{1}{2}}=\frac{275}{2}-\frac{51}{2}\times 29^{\frac{1}{2}}
Simplify. The value x=\frac{275-51\sqrt{29}}{2} satisfies the equation.
x=\frac{51\sqrt{29}+275}{2} x=\frac{275-51\sqrt{29}}{2}
List all solutions of x+7=17\sqrt{x}.