Solve for p
p=-\frac{1}{2-x}
x\neq 2
Solve for x
x=2+\frac{1}{p}
p\neq 0
Graph
Share
Copied to clipboard
xp=p+1+\frac{1}{2}p\times 1^{2}+\frac{1}{2}p\times 1^{3}
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p.
xp=p+1+\frac{1}{2}p\times 1+\frac{1}{2}p\times 1^{3}
Calculate 1 to the power of 2 and get 1.
xp=p+1+\frac{1}{2}p+\frac{1}{2}p\times 1^{3}
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
xp=\frac{3}{2}p+1+\frac{1}{2}p\times 1^{3}
Combine p and \frac{1}{2}p to get \frac{3}{2}p.
xp=\frac{3}{2}p+1+\frac{1}{2}p\times 1
Calculate 1 to the power of 3 and get 1.
xp=\frac{3}{2}p+1+\frac{1}{2}p
Multiply \frac{1}{2} and 1 to get \frac{1}{2}.
xp=2p+1
Combine \frac{3}{2}p and \frac{1}{2}p to get 2p.
xp-2p=1
Subtract 2p from both sides.
\left(x-2\right)p=1
Combine all terms containing p.
\frac{\left(x-2\right)p}{x-2}=\frac{1}{x-2}
Divide both sides by x-2.
p=\frac{1}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
p=\frac{1}{x-2}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}