x = 0 + ( 24,6 ) \cdot ( 5 ) + \frac { 1 } { 2 } ( - 4,92 ) \cdot ( 5 ) ^ { 2 }
Solve for x
x=61,5
Assign x
x≔61,5
Graph
Share
Copied to clipboard
x=0+123+\frac{1}{2}\left(-4,92\right)\times 5^{2}
Multiply 24,6 and 5 to get 123.
x=123+\frac{1}{2}\left(-4,92\right)\times 5^{2}
Add 0 and 123 to get 123.
x=123+\frac{1}{2}\left(-\frac{123}{25}\right)\times 5^{2}
Convert decimal number -4,92 to fraction -\frac{492}{100}. Reduce the fraction -\frac{492}{100} to lowest terms by extracting and canceling out 4.
x=123+\frac{1\left(-123\right)}{2\times 25}\times 5^{2}
Multiply \frac{1}{2} times -\frac{123}{25} by multiplying numerator times numerator and denominator times denominator.
x=123+\frac{-123}{50}\times 5^{2}
Do the multiplications in the fraction \frac{1\left(-123\right)}{2\times 25}.
x=123-\frac{123}{50}\times 5^{2}
Fraction \frac{-123}{50} can be rewritten as -\frac{123}{50} by extracting the negative sign.
x=123-\frac{123}{50}\times 25
Calculate 5 to the power of 2 and get 25.
x=123+\frac{-123\times 25}{50}
Express -\frac{123}{50}\times 25 as a single fraction.
x=123+\frac{-3075}{50}
Multiply -123 and 25 to get -3075.
x=123-\frac{123}{2}
Reduce the fraction \frac{-3075}{50} to lowest terms by extracting and canceling out 25.
x=\frac{246}{2}-\frac{123}{2}
Convert 123 to fraction \frac{246}{2}.
x=\frac{246-123}{2}
Since \frac{246}{2} and \frac{123}{2} have the same denominator, subtract them by subtracting their numerators.
x=\frac{123}{2}
Subtract 123 from 246 to get 123.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}