Solve for x
x = \frac{25}{9} = 2\frac{7}{9} \approx 2.777777778
Graph
Share
Copied to clipboard
x=\frac{-5\times 5}{2}\left(x-3\right)
Express -5\times \frac{5}{2} as a single fraction.
x=\frac{-25}{2}\left(x-3\right)
Multiply -5 and 5 to get -25.
x=-\frac{25}{2}\left(x-3\right)
Fraction \frac{-25}{2} can be rewritten as -\frac{25}{2} by extracting the negative sign.
x=-\frac{25}{2}x-\frac{25}{2}\left(-3\right)
Use the distributive property to multiply -\frac{25}{2} by x-3.
x=-\frac{25}{2}x+\frac{-25\left(-3\right)}{2}
Express -\frac{25}{2}\left(-3\right) as a single fraction.
x=-\frac{25}{2}x+\frac{75}{2}
Multiply -25 and -3 to get 75.
x+\frac{25}{2}x=\frac{75}{2}
Add \frac{25}{2}x to both sides.
\frac{27}{2}x=\frac{75}{2}
Combine x and \frac{25}{2}x to get \frac{27}{2}x.
x=\frac{75}{2}\times \frac{2}{27}
Multiply both sides by \frac{2}{27}, the reciprocal of \frac{27}{2}.
x=\frac{75\times 2}{2\times 27}
Multiply \frac{75}{2} times \frac{2}{27} by multiplying numerator times numerator and denominator times denominator.
x=\frac{75}{27}
Cancel out 2 in both numerator and denominator.
x=\frac{25}{9}
Reduce the fraction \frac{75}{27} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}