Solve for x
x = \frac{\sqrt{41} + 5}{2} \approx 5.701562119
x=\frac{5-\sqrt{41}}{2}\approx -0.701562119
Graph
Share
Copied to clipboard
x+3x^{2}=16x+12
Add 3x^{2} to both sides.
x+3x^{2}-16x=12
Subtract 16x from both sides.
-15x+3x^{2}=12
Combine x and -16x to get -15x.
-15x+3x^{2}-12=0
Subtract 12 from both sides.
3x^{2}-15x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\left(-12\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -15 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\left(-12\right)}}{2\times 3}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\left(-12\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-15\right)±\sqrt{225+144}}{2\times 3}
Multiply -12 times -12.
x=\frac{-\left(-15\right)±\sqrt{369}}{2\times 3}
Add 225 to 144.
x=\frac{-\left(-15\right)±3\sqrt{41}}{2\times 3}
Take the square root of 369.
x=\frac{15±3\sqrt{41}}{2\times 3}
The opposite of -15 is 15.
x=\frac{15±3\sqrt{41}}{6}
Multiply 2 times 3.
x=\frac{3\sqrt{41}+15}{6}
Now solve the equation x=\frac{15±3\sqrt{41}}{6} when ± is plus. Add 15 to 3\sqrt{41}.
x=\frac{\sqrt{41}+5}{2}
Divide 15+3\sqrt{41} by 6.
x=\frac{15-3\sqrt{41}}{6}
Now solve the equation x=\frac{15±3\sqrt{41}}{6} when ± is minus. Subtract 3\sqrt{41} from 15.
x=\frac{5-\sqrt{41}}{2}
Divide 15-3\sqrt{41} by 6.
x=\frac{\sqrt{41}+5}{2} x=\frac{5-\sqrt{41}}{2}
The equation is now solved.
x+3x^{2}=16x+12
Add 3x^{2} to both sides.
x+3x^{2}-16x=12
Subtract 16x from both sides.
-15x+3x^{2}=12
Combine x and -16x to get -15x.
3x^{2}-15x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-15x}{3}=\frac{12}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{15}{3}\right)x=\frac{12}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-5x=\frac{12}{3}
Divide -15 by 3.
x^{2}-5x=4
Divide 12 by 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=4+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=4+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{41}{4}
Add 4 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{41}}{2} x-\frac{5}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}+5}{2} x=\frac{5-\sqrt{41}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}