Solve for a
a=\frac{nx}{x+1}
x\neq -1\text{ and }n\neq 0
Solve for n
\left\{\begin{matrix}n=a+\frac{a}{x}\text{, }&x\neq -1\text{ and }a\neq 0\text{ and }x\neq 0\\n\neq 0\text{, }&x=0\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
xn=\left(x+1\right)\times 1a
Multiply both sides of the equation by n.
xn=\left(x+1\right)a
Use the distributive property to multiply x+1 by 1.
xn=xa+a
Use the distributive property to multiply x+1 by a.
xa+a=xn
Swap sides so that all variable terms are on the left hand side.
\left(x+1\right)a=xn
Combine all terms containing a.
\left(x+1\right)a=nx
The equation is in standard form.
\frac{\left(x+1\right)a}{x+1}=\frac{nx}{x+1}
Divide both sides by x+1.
a=\frac{nx}{x+1}
Dividing by x+1 undoes the multiplication by x+1.
xn=\left(x+1\right)\times 1a
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
xn=\left(x+1\right)a
Use the distributive property to multiply x+1 by 1.
xn=xa+a
Use the distributive property to multiply x+1 by a.
xn=ax+a
The equation is in standard form.
\frac{xn}{x}=\frac{ax+a}{x}
Divide both sides by x.
n=\frac{ax+a}{x}
Dividing by x undoes the multiplication by x.
n=a+\frac{a}{x}
Divide ax+a by x.
n=a+\frac{a}{x}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}