Solve for x
x=4
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{x}\times \frac{x+x}{x}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{x}\times \frac{2x}{x}\right)^{2}
Combine x and x to get 2x.
x^{2}=\left(\sqrt{x}\times 2\right)^{2}
Cancel out x in both numerator and denominator.
x^{2}=\left(\sqrt{x}\right)^{2}\times 2^{2}
Expand \left(\sqrt{x}\times 2\right)^{2}.
x^{2}=x\times 2^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}=x\times 4
Calculate 2 to the power of 2 and get 4.
x^{2}-x\times 4=0
Subtract x\times 4 from both sides.
x^{2}-4x=0
Multiply -1 and 4 to get -4.
x\left(x-4\right)=0
Factor out x.
x=0 x=4
To find equation solutions, solve x=0 and x-4=0.
0=\sqrt{0}\times \frac{0+0}{0}
Substitute 0 for x in the equation x=\sqrt{x}\times \frac{x+x}{x}. The expression is undefined.
4=\sqrt{4}\times \frac{4+4}{4}
Substitute 4 for x in the equation x=\sqrt{x}\times \frac{x+x}{x}.
4=4
Simplify. The value x=4 satisfies the equation.
x=4
Equation x=\frac{x+x}{x}\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}