Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\left(\sqrt{x+4}\right)^{2}
Square both sides of the equation.
x^{2}=x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x^{2}-x=4
Subtract x from both sides.
x^{2}-x-4=0
Subtract 4 from both sides.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-4\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+16}}{2}
Multiply -4 times -4.
x=\frac{-\left(-1\right)±\sqrt{17}}{2}
Add 1 to 16.
x=\frac{1±\sqrt{17}}{2}
The opposite of -1 is 1.
x=\frac{\sqrt{17}+1}{2}
Now solve the equation x=\frac{1±\sqrt{17}}{2} when ± is plus. Add 1 to \sqrt{17}.
x=\frac{1-\sqrt{17}}{2}
Now solve the equation x=\frac{1±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from 1.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
The equation is now solved.
\frac{\sqrt{17}+1}{2}=\sqrt{\frac{\sqrt{17}+1}{2}+4}
Substitute \frac{\sqrt{17}+1}{2} for x in the equation x=\sqrt{x+4}.
\frac{1}{2}\times 17^{\frac{1}{2}}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{17}+1}{2} satisfies the equation.
\frac{1-\sqrt{17}}{2}=\sqrt{\frac{1-\sqrt{17}}{2}+4}
Substitute \frac{1-\sqrt{17}}{2} for x in the equation x=\sqrt{x+4}.
\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}=-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)
Simplify. The value x=\frac{1-\sqrt{17}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{17}+1}{2}
Equation x=\sqrt{x+4} has a unique solution.