Solve for x
x=1
Graph
Share
Copied to clipboard
x^{2}=\left(\sqrt{2x-1}\right)^{2}
Square both sides of the equation.
x^{2}=2x-1
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
x^{2}-2x=-1
Subtract 2x from both sides.
x^{2}-2x+1=0
Add 1 to both sides.
a+b=-2 ab=1
To solve the equation, factor x^{2}-2x+1 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-1 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x-1\right)\left(x-1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
\left(x-1\right)^{2}
Rewrite as a binomial square.
x=1
To find equation solution, solve x-1=0.
1=\sqrt{2\times 1-1}
Substitute 1 for x in the equation x=\sqrt{2x-1}.
1=1
Simplify. The value x=1 satisfies the equation.
x=1
Equation x=\sqrt{2x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}