Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-\frac{x+1}{x}=0
Subtract \frac{x+1}{x} from both sides.
\frac{xx}{x}-\frac{x+1}{x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
Since \frac{xx}{x} and \frac{x+1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-1}{x}=0
Do the multiplications in xx-\left(x+1\right).
x^{2}-x-1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4}}{2}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{5}}{2}
Add 1 to 4.
x=\frac{1±\sqrt{5}}{2}
The opposite of -1 is 1.
x=\frac{\sqrt{5}+1}{2}
Now solve the equation x=\frac{1±\sqrt{5}}{2} when ± is plus. Add 1 to \sqrt{5}.
x=\frac{1-\sqrt{5}}{2}
Now solve the equation x=\frac{1±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 1.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
The equation is now solved.
x-\frac{x+1}{x}=0
Subtract \frac{x+1}{x} from both sides.
\frac{xx}{x}-\frac{x+1}{x}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x}{x}.
\frac{xx-\left(x+1\right)}{x}=0
Since \frac{xx}{x} and \frac{x+1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-x-1}{x}=0
Do the multiplications in xx-\left(x+1\right).
x^{2}-x-1=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{2}-x=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{5}{4}
Add 1 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
Add \frac{1}{2} to both sides of the equation.