Solve for C (complex solution)
\left\{\begin{matrix}C=\frac{dux}{y^{2}}\text{, }&u\neq 0\text{ and }d\neq 0\text{ and }y\neq 0\\C\in \mathrm{C}\text{, }&x=0\text{ and }y=0\text{ and }u\neq 0\text{ and }d\neq 0\end{matrix}\right.
Solve for C
\left\{\begin{matrix}C=\frac{dux}{y^{2}}\text{, }&u\neq 0\text{ and }d\neq 0\text{ and }y\neq 0\\C\in \mathrm{R}\text{, }&x=0\text{ and }y=0\text{ and }u\neq 0\text{ and }d\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{Cy^{2}}{ux}\text{, }&y\neq 0\text{ and }C\neq 0\text{ and }u\neq 0\text{ and }x\neq 0\\d\neq 0\text{, }&\left(y=0\text{ or }C=0\right)\text{ and }x=0\text{ and }u\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
xdu=Cy^{2}
Multiply both sides of the equation by du.
Cy^{2}=xdu
Swap sides so that all variable terms are on the left hand side.
y^{2}C=dux
The equation is in standard form.
\frac{y^{2}C}{y^{2}}=\frac{dux}{y^{2}}
Divide both sides by y^{2}.
C=\frac{dux}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
xdu=Cy^{2}
Multiply both sides of the equation by du.
Cy^{2}=xdu
Swap sides so that all variable terms are on the left hand side.
y^{2}C=dux
The equation is in standard form.
\frac{y^{2}C}{y^{2}}=\frac{dux}{y^{2}}
Divide both sides by y^{2}.
C=\frac{dux}{y^{2}}
Dividing by y^{2} undoes the multiplication by y^{2}.
xdu=Cy^{2}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by du.
dux=Cy^{2}
Reorder the terms.
uxd=Cy^{2}
The equation is in standard form.
\frac{uxd}{ux}=\frac{Cy^{2}}{ux}
Divide both sides by xu.
d=\frac{Cy^{2}}{ux}
Dividing by xu undoes the multiplication by xu.
d=\frac{Cy^{2}}{ux}\text{, }d\neq 0
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}