Solve for b
b=n\left(9-5x\right)
n\neq 0
Solve for n
\left\{\begin{matrix}n=-\frac{b}{5x-9}\text{, }&b\neq 0\text{ and }x\neq \frac{9}{5}\\n\neq 0\text{, }&b=0\text{ and }x=\frac{9}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
x\times 5n=9n-b
Multiply both sides of the equation by 5n.
9n-b=x\times 5n
Swap sides so that all variable terms are on the left hand side.
-b=x\times 5n-9n
Subtract 9n from both sides.
-b=5nx-9n
The equation is in standard form.
\frac{-b}{-1}=\frac{n\left(5x-9\right)}{-1}
Divide both sides by -1.
b=\frac{n\left(5x-9\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
b=9n-5nx
Divide n\left(-9+5x\right) by -1.
x\times 5n=9n-b
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5n.
x\times 5n-9n=-b
Subtract 9n from both sides.
\left(x\times 5-9\right)n=-b
Combine all terms containing n.
\left(5x-9\right)n=-b
The equation is in standard form.
\frac{\left(5x-9\right)n}{5x-9}=-\frac{b}{5x-9}
Divide both sides by 5x-9.
n=-\frac{b}{5x-9}
Dividing by 5x-9 undoes the multiplication by 5x-9.
n=-\frac{b}{5x-9}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}