Solve for x
x=42
Graph
Share
Copied to clipboard
x=\frac{56\left(2x-9\right)}{100}
Combine x and x to get 2x.
x=\frac{14}{25}\left(2x-9\right)
Divide 56\left(2x-9\right) by 100 to get \frac{14}{25}\left(2x-9\right).
x=\frac{14}{25}\times 2x+\frac{14}{25}\left(-9\right)
Use the distributive property to multiply \frac{14}{25} by 2x-9.
x=\frac{14\times 2}{25}x+\frac{14}{25}\left(-9\right)
Express \frac{14}{25}\times 2 as a single fraction.
x=\frac{28}{25}x+\frac{14}{25}\left(-9\right)
Multiply 14 and 2 to get 28.
x=\frac{28}{25}x+\frac{14\left(-9\right)}{25}
Express \frac{14}{25}\left(-9\right) as a single fraction.
x=\frac{28}{25}x+\frac{-126}{25}
Multiply 14 and -9 to get -126.
x=\frac{28}{25}x-\frac{126}{25}
Fraction \frac{-126}{25} can be rewritten as -\frac{126}{25} by extracting the negative sign.
x-\frac{28}{25}x=-\frac{126}{25}
Subtract \frac{28}{25}x from both sides.
-\frac{3}{25}x=-\frac{126}{25}
Combine x and -\frac{28}{25}x to get -\frac{3}{25}x.
x=-\frac{126}{25}\left(-\frac{25}{3}\right)
Multiply both sides by -\frac{25}{3}, the reciprocal of -\frac{3}{25}.
x=\frac{-126\left(-25\right)}{25\times 3}
Multiply -\frac{126}{25} times -\frac{25}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{3150}{75}
Do the multiplications in the fraction \frac{-126\left(-25\right)}{25\times 3}.
x=42
Divide 3150 by 75 to get 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}