Solve for x
x=24-10\sqrt{6}\approx -0.494897428
Assign x
x≔24-10\sqrt{6}
Graph
Share
Copied to clipboard
x=\frac{\left(4\sqrt{3}-6\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}
Rationalize the denominator of \frac{4\sqrt{3}-6\sqrt{2}}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
x=\frac{\left(4\sqrt{3}-6\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x=\frac{\left(4\sqrt{3}-6\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}
Square \sqrt{2}. Square \sqrt{3}.
x=\frac{\left(4\sqrt{3}-6\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-1}\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}
Subtract 3 from 2 to get -1.
x=\left(-\left(4\sqrt{3}-6\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)\right)\times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}
Anything divided by -1 gives its opposite.
x=\left(-\left(4\sqrt{3}-6\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)\right)\times 1
Cancel out \sqrt{2}-\sqrt{3} in both numerator and denominator.
x=\left(-\left(4\sqrt{3}\sqrt{2}-4\left(\sqrt{3}\right)^{2}-6\left(\sqrt{2}\right)^{2}+6\sqrt{3}\sqrt{2}\right)\right)\times 1
Apply the distributive property by multiplying each term of 4\sqrt{3}-6\sqrt{2} by each term of \sqrt{2}-\sqrt{3}.
x=\left(-\left(4\sqrt{6}-4\left(\sqrt{3}\right)^{2}-6\left(\sqrt{2}\right)^{2}+6\sqrt{3}\sqrt{2}\right)\right)\times 1
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
x=\left(-\left(4\sqrt{6}-4\times 3-6\left(\sqrt{2}\right)^{2}+6\sqrt{3}\sqrt{2}\right)\right)\times 1
The square of \sqrt{3} is 3.
x=\left(-\left(4\sqrt{6}-12-6\left(\sqrt{2}\right)^{2}+6\sqrt{3}\sqrt{2}\right)\right)\times 1
Multiply -4 and 3 to get -12.
x=\left(-\left(4\sqrt{6}-12-6\times 2+6\sqrt{3}\sqrt{2}\right)\right)\times 1
The square of \sqrt{2} is 2.
x=\left(-\left(4\sqrt{6}-12-12+6\sqrt{3}\sqrt{2}\right)\right)\times 1
Multiply -6 and 2 to get -12.
x=\left(-\left(4\sqrt{6}-24+6\sqrt{3}\sqrt{2}\right)\right)\times 1
Subtract 12 from -12 to get -24.
x=\left(-\left(4\sqrt{6}-24+6\sqrt{6}\right)\right)\times 1
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
x=\left(-\left(10\sqrt{6}-24\right)\right)\times 1
Combine 4\sqrt{6} and 6\sqrt{6} to get 10\sqrt{6}.
x=\left(-10\sqrt{6}-\left(-24\right)\right)\times 1
To find the opposite of 10\sqrt{6}-24, find the opposite of each term.
x=\left(-10\sqrt{6}+24\right)\times 1
The opposite of -24 is 24.
x=-10\sqrt{6}+24
Use the distributive property to multiply -10\sqrt{6}+24 by 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}