Solve for x
x=1
x=2
Graph
Share
Copied to clipboard
x=\left(\frac{1}{6}x+\frac{1}{6}\right)\left(x+2\right)
Use the distributive property to multiply \frac{1}{6} by x+1.
x=\frac{1}{6}x^{2}+\frac{1}{2}x+\frac{1}{3}
Use the distributive property to multiply \frac{1}{6}x+\frac{1}{6} by x+2 and combine like terms.
x-\frac{1}{6}x^{2}=\frac{1}{2}x+\frac{1}{3}
Subtract \frac{1}{6}x^{2} from both sides.
x-\frac{1}{6}x^{2}-\frac{1}{2}x=\frac{1}{3}
Subtract \frac{1}{2}x from both sides.
\frac{1}{2}x-\frac{1}{6}x^{2}=\frac{1}{3}
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
\frac{1}{2}x-\frac{1}{6}x^{2}-\frac{1}{3}=0
Subtract \frac{1}{3} from both sides.
-\frac{1}{6}x^{2}+\frac{1}{2}x-\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-\frac{1}{6}\right)\left(-\frac{1}{3}\right)}}{2\left(-\frac{1}{6}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{6} for a, \frac{1}{2} for b, and -\frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-\frac{1}{6}\right)\left(-\frac{1}{3}\right)}}{2\left(-\frac{1}{6}\right)}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+\frac{2}{3}\left(-\frac{1}{3}\right)}}{2\left(-\frac{1}{6}\right)}
Multiply -4 times -\frac{1}{6}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{2}{9}}}{2\left(-\frac{1}{6}\right)}
Multiply \frac{2}{3} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{36}}}{2\left(-\frac{1}{6}\right)}
Add \frac{1}{4} to -\frac{2}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±\frac{1}{6}}{2\left(-\frac{1}{6}\right)}
Take the square root of \frac{1}{36}.
x=\frac{-\frac{1}{2}±\frac{1}{6}}{-\frac{1}{3}}
Multiply 2 times -\frac{1}{6}.
x=-\frac{\frac{1}{3}}{-\frac{1}{3}}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{1}{6}}{-\frac{1}{3}} when ± is plus. Add -\frac{1}{2} to \frac{1}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide -\frac{1}{3} by -\frac{1}{3} by multiplying -\frac{1}{3} by the reciprocal of -\frac{1}{3}.
x=-\frac{\frac{2}{3}}{-\frac{1}{3}}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{1}{6}}{-\frac{1}{3}} when ± is minus. Subtract \frac{1}{6} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide -\frac{2}{3} by -\frac{1}{3} by multiplying -\frac{2}{3} by the reciprocal of -\frac{1}{3}.
x=1 x=2
The equation is now solved.
x=\left(\frac{1}{6}x+\frac{1}{6}\right)\left(x+2\right)
Use the distributive property to multiply \frac{1}{6} by x+1.
x=\frac{1}{6}x^{2}+\frac{1}{2}x+\frac{1}{3}
Use the distributive property to multiply \frac{1}{6}x+\frac{1}{6} by x+2 and combine like terms.
x-\frac{1}{6}x^{2}=\frac{1}{2}x+\frac{1}{3}
Subtract \frac{1}{6}x^{2} from both sides.
x-\frac{1}{6}x^{2}-\frac{1}{2}x=\frac{1}{3}
Subtract \frac{1}{2}x from both sides.
\frac{1}{2}x-\frac{1}{6}x^{2}=\frac{1}{3}
Combine x and -\frac{1}{2}x to get \frac{1}{2}x.
-\frac{1}{6}x^{2}+\frac{1}{2}x=\frac{1}{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{6}x^{2}+\frac{1}{2}x}{-\frac{1}{6}}=\frac{\frac{1}{3}}{-\frac{1}{6}}
Multiply both sides by -6.
x^{2}+\frac{\frac{1}{2}}{-\frac{1}{6}}x=\frac{\frac{1}{3}}{-\frac{1}{6}}
Dividing by -\frac{1}{6} undoes the multiplication by -\frac{1}{6}.
x^{2}-3x=\frac{\frac{1}{3}}{-\frac{1}{6}}
Divide \frac{1}{2} by -\frac{1}{6} by multiplying \frac{1}{2} by the reciprocal of -\frac{1}{6}.
x^{2}-3x=-2
Divide \frac{1}{3} by -\frac{1}{6} by multiplying \frac{1}{3} by the reciprocal of -\frac{1}{6}.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Simplify.
x=2 x=1
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}