Solve for f
f=4-\frac{16}{x}
x\neq 0
Solve for x
x=\frac{16}{4-f}
f\neq 4
Graph
Share
Copied to clipboard
\frac{1}{4}fx+4=x
Swap sides so that all variable terms are on the left hand side.
\frac{1}{4}fx=x-4
Subtract 4 from both sides.
\frac{x}{4}f=x-4
The equation is in standard form.
\frac{4\times \frac{x}{4}f}{x}=\frac{4\left(x-4\right)}{x}
Divide both sides by \frac{1}{4}x.
f=\frac{4\left(x-4\right)}{x}
Dividing by \frac{1}{4}x undoes the multiplication by \frac{1}{4}x.
f=4-\frac{16}{x}
Divide x-4 by \frac{1}{4}x.
x-\frac{1}{4}fx=4
Subtract \frac{1}{4}fx from both sides.
\left(1-\frac{1}{4}f\right)x=4
Combine all terms containing x.
\left(-\frac{f}{4}+1\right)x=4
The equation is in standard form.
\frac{\left(-\frac{f}{4}+1\right)x}{-\frac{f}{4}+1}=\frac{4}{-\frac{f}{4}+1}
Divide both sides by 1-\frac{1}{4}f.
x=\frac{4}{-\frac{f}{4}+1}
Dividing by 1-\frac{1}{4}f undoes the multiplication by 1-\frac{1}{4}f.
x=\frac{16}{4-f}
Divide 4 by 1-\frac{1}{4}f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}