Solve for λ
\lambda =-\frac{4x-3}{2-3x}
x\neq \frac{2}{3}\text{ and }x\neq 0\text{ and }x\neq \frac{1}{2}
Solve for x
x=-\frac{2\lambda -3}{4-3\lambda }
\lambda \neq \frac{4}{3}\text{ and }\lambda \neq \frac{3}{2}\text{ and }\lambda \neq 2
Graph
Share
Copied to clipboard
x=\frac{1}{2-\frac{1}{\frac{2\left(2-\lambda \right)}{2-\lambda }-\frac{1}{2-\lambda }}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2-\lambda }{2-\lambda }.
x=\frac{1}{2-\frac{1}{\frac{2\left(2-\lambda \right)-1}{2-\lambda }}}
Since \frac{2\left(2-\lambda \right)}{2-\lambda } and \frac{1}{2-\lambda } have the same denominator, subtract them by subtracting their numerators.
x=\frac{1}{2-\frac{1}{\frac{4-2\lambda -1}{2-\lambda }}}
Do the multiplications in 2\left(2-\lambda \right)-1.
x=\frac{1}{2-\frac{1}{\frac{3-2\lambda }{2-\lambda }}}
Combine like terms in 4-2\lambda -1.
x=\frac{1}{2-\frac{2-\lambda }{3-2\lambda }}
Variable \lambda cannot be equal to 2 since division by zero is not defined. Divide 1 by \frac{3-2\lambda }{2-\lambda } by multiplying 1 by the reciprocal of \frac{3-2\lambda }{2-\lambda }.
x=\frac{1}{\frac{2\left(3-2\lambda \right)}{3-2\lambda }-\frac{2-\lambda }{3-2\lambda }}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{3-2\lambda }{3-2\lambda }.
x=\frac{1}{\frac{2\left(3-2\lambda \right)-\left(2-\lambda \right)}{3-2\lambda }}
Since \frac{2\left(3-2\lambda \right)}{3-2\lambda } and \frac{2-\lambda }{3-2\lambda } have the same denominator, subtract them by subtracting their numerators.
x=\frac{1}{\frac{6-4\lambda -2+\lambda }{3-2\lambda }}
Do the multiplications in 2\left(3-2\lambda \right)-\left(2-\lambda \right).
x=\frac{1}{\frac{4-3\lambda }{3-2\lambda }}
Combine like terms in 6-4\lambda -2+\lambda .
x=\frac{3-2\lambda }{4-3\lambda }
Variable \lambda cannot be equal to \frac{3}{2} since division by zero is not defined. Divide 1 by \frac{4-3\lambda }{3-2\lambda } by multiplying 1 by the reciprocal of \frac{4-3\lambda }{3-2\lambda }.
\frac{3-2\lambda }{4-3\lambda }=x
Swap sides so that all variable terms are on the left hand side.
3-2\lambda =x\left(-3\lambda +4\right)
Variable \lambda cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by -3\lambda +4.
3-2\lambda =-3x\lambda +4x
Use the distributive property to multiply x by -3\lambda +4.
3-2\lambda +3x\lambda =4x
Add 3x\lambda to both sides.
-2\lambda +3x\lambda =4x-3
Subtract 3 from both sides.
\left(-2+3x\right)\lambda =4x-3
Combine all terms containing \lambda .
\left(3x-2\right)\lambda =4x-3
The equation is in standard form.
\frac{\left(3x-2\right)\lambda }{3x-2}=\frac{4x-3}{3x-2}
Divide both sides by -2+3x.
\lambda =\frac{4x-3}{3x-2}
Dividing by -2+3x undoes the multiplication by -2+3x.
\lambda =\frac{4x-3}{3x-2}\text{, }\lambda \neq \frac{4}{3}\text{ and }\lambda \neq \frac{3}{2}\text{ and }\lambda \neq 2
Variable \lambda cannot be equal to any of the values \frac{4}{3},\frac{3}{2},2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}