Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-x^{2}=-30x+125
Subtract x^{2} from both sides.
x-x^{2}+30x=125
Add 30x to both sides.
31x-x^{2}=125
Combine x and 30x to get 31x.
31x-x^{2}-125=0
Subtract 125 from both sides.
-x^{2}+31x-125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-31±\sqrt{31^{2}-4\left(-1\right)\left(-125\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 31 for b, and -125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-31±\sqrt{961-4\left(-1\right)\left(-125\right)}}{2\left(-1\right)}
Square 31.
x=\frac{-31±\sqrt{961+4\left(-125\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-31±\sqrt{961-500}}{2\left(-1\right)}
Multiply 4 times -125.
x=\frac{-31±\sqrt{461}}{2\left(-1\right)}
Add 961 to -500.
x=\frac{-31±\sqrt{461}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{461}-31}{-2}
Now solve the equation x=\frac{-31±\sqrt{461}}{-2} when ± is plus. Add -31 to \sqrt{461}.
x=\frac{31-\sqrt{461}}{2}
Divide -31+\sqrt{461} by -2.
x=\frac{-\sqrt{461}-31}{-2}
Now solve the equation x=\frac{-31±\sqrt{461}}{-2} when ± is minus. Subtract \sqrt{461} from -31.
x=\frac{\sqrt{461}+31}{2}
Divide -31-\sqrt{461} by -2.
x=\frac{31-\sqrt{461}}{2} x=\frac{\sqrt{461}+31}{2}
The equation is now solved.
x-x^{2}=-30x+125
Subtract x^{2} from both sides.
x-x^{2}+30x=125
Add 30x to both sides.
31x-x^{2}=125
Combine x and 30x to get 31x.
-x^{2}+31x=125
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+31x}{-1}=\frac{125}{-1}
Divide both sides by -1.
x^{2}+\frac{31}{-1}x=\frac{125}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-31x=\frac{125}{-1}
Divide 31 by -1.
x^{2}-31x=-125
Divide 125 by -1.
x^{2}-31x+\left(-\frac{31}{2}\right)^{2}=-125+\left(-\frac{31}{2}\right)^{2}
Divide -31, the coefficient of the x term, by 2 to get -\frac{31}{2}. Then add the square of -\frac{31}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-31x+\frac{961}{4}=-125+\frac{961}{4}
Square -\frac{31}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-31x+\frac{961}{4}=\frac{461}{4}
Add -125 to \frac{961}{4}.
\left(x-\frac{31}{2}\right)^{2}=\frac{461}{4}
Factor x^{2}-31x+\frac{961}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{2}\right)^{2}}=\sqrt{\frac{461}{4}}
Take the square root of both sides of the equation.
x-\frac{31}{2}=\frac{\sqrt{461}}{2} x-\frac{31}{2}=-\frac{\sqrt{461}}{2}
Simplify.
x=\frac{\sqrt{461}+31}{2} x=\frac{31-\sqrt{461}}{2}
Add \frac{31}{2} to both sides of the equation.