Solve for x
x = \frac{\sqrt{717} + 27}{2} \approx 26.888427839
x=\frac{27-\sqrt{717}}{2}\approx 0.111572161
Graph
Share
Copied to clipboard
xx+12=27x+9
Multiply both sides of the equation by 3.
x^{2}+12=27x+9
Multiply x and x to get x^{2}.
x^{2}+12-27x=9
Subtract 27x from both sides.
x^{2}+12-27x-9=0
Subtract 9 from both sides.
x^{2}+3-27x=0
Subtract 9 from 12 to get 3.
x^{2}-27x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 3}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -27 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 3}}{2}
Square -27.
x=\frac{-\left(-27\right)±\sqrt{729-12}}{2}
Multiply -4 times 3.
x=\frac{-\left(-27\right)±\sqrt{717}}{2}
Add 729 to -12.
x=\frac{27±\sqrt{717}}{2}
The opposite of -27 is 27.
x=\frac{\sqrt{717}+27}{2}
Now solve the equation x=\frac{27±\sqrt{717}}{2} when ± is plus. Add 27 to \sqrt{717}.
x=\frac{27-\sqrt{717}}{2}
Now solve the equation x=\frac{27±\sqrt{717}}{2} when ± is minus. Subtract \sqrt{717} from 27.
x=\frac{\sqrt{717}+27}{2} x=\frac{27-\sqrt{717}}{2}
The equation is now solved.
xx+12=27x+9
Multiply both sides of the equation by 3.
x^{2}+12=27x+9
Multiply x and x to get x^{2}.
x^{2}+12-27x=9
Subtract 27x from both sides.
x^{2}-27x=9-12
Subtract 12 from both sides.
x^{2}-27x=-3
Subtract 12 from 9 to get -3.
x^{2}-27x+\left(-\frac{27}{2}\right)^{2}=-3+\left(-\frac{27}{2}\right)^{2}
Divide -27, the coefficient of the x term, by 2 to get -\frac{27}{2}. Then add the square of -\frac{27}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-27x+\frac{729}{4}=-3+\frac{729}{4}
Square -\frac{27}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-27x+\frac{729}{4}=\frac{717}{4}
Add -3 to \frac{729}{4}.
\left(x-\frac{27}{2}\right)^{2}=\frac{717}{4}
Factor x^{2}-27x+\frac{729}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{27}{2}\right)^{2}}=\sqrt{\frac{717}{4}}
Take the square root of both sides of the equation.
x-\frac{27}{2}=\frac{\sqrt{717}}{2} x-\frac{27}{2}=-\frac{\sqrt{717}}{2}
Simplify.
x=\frac{\sqrt{717}+27}{2} x=\frac{27-\sqrt{717}}{2}
Add \frac{27}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}