Solve for x
x = \frac{200}{9} = 22\frac{2}{9} \approx 22.222222222
Graph
Share
Copied to clipboard
\frac{x\left(\frac{1}{3}-\frac{1}{12}\right)}{4+\frac{1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Divide x by \frac{4+\frac{1}{6}}{\frac{1}{3}-\frac{1}{12}} by multiplying x by the reciprocal of \frac{4+\frac{1}{6}}{\frac{1}{3}-\frac{1}{12}}.
\frac{x\left(\frac{4}{12}-\frac{1}{12}\right)}{4+\frac{1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Least common multiple of 3 and 12 is 12. Convert \frac{1}{3} and \frac{1}{12} to fractions with denominator 12.
\frac{x\times \frac{4-1}{12}}{4+\frac{1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Since \frac{4}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{x\times \frac{3}{12}}{4+\frac{1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Subtract 1 from 4 to get 3.
\frac{x\times \frac{1}{4}}{4+\frac{1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{x\times \frac{1}{4}}{\frac{24}{6}+\frac{1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Convert 4 to fraction \frac{24}{6}.
\frac{x\times \frac{1}{4}}{\frac{24+1}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Since \frac{24}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{x\times \frac{1}{4}}{\frac{25}{6}}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Add 24 and 1 to get 25.
x\times \frac{3}{50}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{2}{5}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Divide x\times \frac{1}{4} by \frac{25}{6} to get x\times \frac{3}{50}.
x\times \frac{3}{50}=\frac{\frac{26}{9}\left(\frac{8}{15}-\frac{6}{15}\right)}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Least common multiple of 15 and 5 is 15. Convert \frac{8}{15} and \frac{2}{5} to fractions with denominator 15.
x\times \frac{3}{50}=\frac{\frac{26}{9}\times \frac{8-6}{15}}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Since \frac{8}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
x\times \frac{3}{50}=\frac{\frac{26}{9}\times \frac{2}{15}}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Subtract 6 from 8 to get 2.
x\times \frac{3}{50}=\frac{\frac{26\times 2}{9\times 15}}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Multiply \frac{26}{9} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{1-\frac{11}{15}}{3}+\frac{1}{5}}
Do the multiplications in the fraction \frac{26\times 2}{9\times 15}.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{\frac{15}{15}-\frac{11}{15}}{3}+\frac{1}{5}}
Convert 1 to fraction \frac{15}{15}.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{\frac{15-11}{15}}{3}+\frac{1}{5}}
Since \frac{15}{15} and \frac{11}{15} have the same denominator, subtract them by subtracting their numerators.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{\frac{4}{15}}{3}+\frac{1}{5}}
Subtract 11 from 15 to get 4.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{4}{15\times 3}+\frac{1}{5}}
Express \frac{\frac{4}{15}}{3} as a single fraction.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{4}{45}+\frac{1}{5}}
Multiply 15 and 3 to get 45.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{4}{45}+\frac{9}{45}}
Least common multiple of 45 and 5 is 45. Convert \frac{4}{45} and \frac{1}{5} to fractions with denominator 45.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{4+9}{45}}
Since \frac{4}{45} and \frac{9}{45} have the same denominator, add them by adding their numerators.
x\times \frac{3}{50}=\frac{\frac{52}{135}}{\frac{13}{45}}
Add 4 and 9 to get 13.
x\times \frac{3}{50}=\frac{52}{135}\times \frac{45}{13}
Divide \frac{52}{135} by \frac{13}{45} by multiplying \frac{52}{135} by the reciprocal of \frac{13}{45}.
x\times \frac{3}{50}=\frac{52\times 45}{135\times 13}
Multiply \frac{52}{135} times \frac{45}{13} by multiplying numerator times numerator and denominator times denominator.
x\times \frac{3}{50}=\frac{2340}{1755}
Do the multiplications in the fraction \frac{52\times 45}{135\times 13}.
x\times \frac{3}{50}=\frac{4}{3}
Reduce the fraction \frac{2340}{1755} to lowest terms by extracting and canceling out 585.
x=\frac{4}{3}\times \frac{50}{3}
Multiply both sides by \frac{50}{3}, the reciprocal of \frac{3}{50}.
x=\frac{4\times 50}{3\times 3}
Multiply \frac{4}{3} times \frac{50}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{200}{9}
Do the multiplications in the fraction \frac{4\times 50}{3\times 3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}