Solve for a
a=x^{2}-\left(\frac{x}{y}\right)^{2}+6
\left(x\geq 0\text{ and }y>0\right)\text{ or }\left(x\leq 0\text{ and }y<0\right)
Solve for a (complex solution)
a=x^{2}-\left(\frac{x}{y}\right)^{2}+6
y\neq 0\text{ and }\left(|arg(\sqrt{\left(\frac{x}{y}\right)^{2}}y)-arg(x)|<\pi \text{ or }x=0\right)
Graph
Share
Copied to clipboard
x=y\sqrt{x^{2}-a+6}
Multiply both sides of the equation by y.
y\sqrt{x^{2}-a+6}=x
Swap sides so that all variable terms are on the left hand side.
\frac{y\sqrt{-a+x^{2}+6}}{y}=\frac{x}{y}
Divide both sides by y.
\sqrt{-a+x^{2}+6}=\frac{x}{y}
Dividing by y undoes the multiplication by y.
-a+x^{2}+6=\frac{x^{2}}{y^{2}}
Square both sides of the equation.
-a+x^{2}+6-\left(x^{2}+6\right)=\frac{x^{2}}{y^{2}}-\left(x^{2}+6\right)
Subtract x^{2}+6 from both sides of the equation.
-a=\frac{x^{2}}{y^{2}}-\left(x^{2}+6\right)
Subtracting x^{2}+6 from itself leaves 0.
-a=-x^{2}+\frac{x^{2}}{y^{2}}-6
Subtract x^{2}+6 from \frac{x^{2}}{y^{2}}.
\frac{-a}{-1}=\frac{-x^{2}+\frac{x^{2}}{y^{2}}-6}{-1}
Divide both sides by -1.
a=\frac{-x^{2}+\frac{x^{2}}{y^{2}}-6}{-1}
Dividing by -1 undoes the multiplication by -1.
a=x^{2}-\frac{x^{2}}{y^{2}}+6
Divide -x^{2}-6+\frac{x^{2}}{y^{2}} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}