Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(-14x+x^{2}+7)
Combine x and -15x to get -14x.
x^{2}-14x+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 7}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 7}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-28}}{2}
Multiply -4 times 7.
x=\frac{-\left(-14\right)±\sqrt{168}}{2}
Add 196 to -28.
x=\frac{-\left(-14\right)±2\sqrt{42}}{2}
Take the square root of 168.
x=\frac{14±2\sqrt{42}}{2}
The opposite of -14 is 14.
x=\frac{2\sqrt{42}+14}{2}
Now solve the equation x=\frac{14±2\sqrt{42}}{2} when ± is plus. Add 14 to 2\sqrt{42}.
x=\sqrt{42}+7
Divide 14+2\sqrt{42} by 2.
x=\frac{14-2\sqrt{42}}{2}
Now solve the equation x=\frac{14±2\sqrt{42}}{2} when ± is minus. Subtract 2\sqrt{42} from 14.
x=7-\sqrt{42}
Divide 14-2\sqrt{42} by 2.
x^{2}-14x+7=\left(x-\left(\sqrt{42}+7\right)\right)\left(x-\left(7-\sqrt{42}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7+\sqrt{42} for x_{1} and 7-\sqrt{42} for x_{2}.
-14x+x^{2}+7
Combine x and -15x to get -14x.