Solve for r (complex solution)
\left\{\begin{matrix}r=-\frac{x+n}{\left(n-1\right)x^{n}}\text{, }&\left(x\neq 0\text{ and }n\neq 1\right)\text{ or }n=0\\r\in \mathrm{C}\text{, }&x=-1\text{ and }n=1\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=-\frac{x+n}{\left(n-1\right)x^{n}}\text{, }&n\neq 1\text{ and }\left(x>0\text{ or }Denominator(n)\text{bmod}2=1\right)\text{ and }x\neq 0\\r\in \mathrm{R}\text{, }&x=-1\text{ and }n=1\end{matrix}\right.
Share
Copied to clipboard
x+n=x^{n}r-x^{n}rn
Use the distributive property to multiply x^{n}r by 1-n.
x^{n}r-x^{n}rn=x+n
Swap sides so that all variable terms are on the left hand side.
\left(x^{n}-x^{n}n\right)r=x+n
Combine all terms containing r.
\left(x^{n}-nx^{n}\right)r=x+n
The equation is in standard form.
\frac{\left(x^{n}-nx^{n}\right)r}{x^{n}-nx^{n}}=\frac{x+n}{x^{n}-nx^{n}}
Divide both sides by x^{n}-x^{n}n.
r=\frac{x+n}{x^{n}-nx^{n}}
Dividing by x^{n}-x^{n}n undoes the multiplication by x^{n}-x^{n}n.
r=\frac{x+n}{\left(1-n\right)x^{n}}
Divide x+n by x^{n}-x^{n}n.
x+n=x^{n}r-x^{n}rn
Use the distributive property to multiply x^{n}r by 1-n.
x^{n}r-x^{n}rn=x+n
Swap sides so that all variable terms are on the left hand side.
\left(x^{n}-x^{n}n\right)r=x+n
Combine all terms containing r.
\left(x^{n}-nx^{n}\right)r=x+n
The equation is in standard form.
\frac{\left(x^{n}-nx^{n}\right)r}{x^{n}-nx^{n}}=\frac{x+n}{x^{n}-nx^{n}}
Divide both sides by x^{n}-x^{n}n.
r=\frac{x+n}{x^{n}-nx^{n}}
Dividing by x^{n}-x^{n}n undoes the multiplication by x^{n}-x^{n}n.
r=\frac{x+n}{\left(1-n\right)x^{n}}
Divide x+n by x^{n}-x^{n}n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}