Solve for x
x=3
x=-1
Graph
Share
Copied to clipboard
\left(x+5\right)^{2}=\left(\sqrt{12x+28}\right)^{2}
Square both sides of the equation.
x^{2}+10x+25=\left(\sqrt{12x+28}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
x^{2}+10x+25=12x+28
Calculate \sqrt{12x+28} to the power of 2 and get 12x+28.
x^{2}+10x+25-12x=28
Subtract 12x from both sides.
x^{2}-2x+25=28
Combine 10x and -12x to get -2x.
x^{2}-2x+25-28=0
Subtract 28 from both sides.
x^{2}-2x-3=0
Subtract 28 from 25 to get -3.
a+b=-2 ab=-3
To solve the equation, factor x^{2}-2x-3 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(x-3\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=3 x=-1
To find equation solutions, solve x-3=0 and x+1=0.
3+5=\sqrt{12\times 3+28}
Substitute 3 for x in the equation x+5=\sqrt{12x+28}.
8=8
Simplify. The value x=3 satisfies the equation.
-1+5=\sqrt{12\left(-1\right)+28}
Substitute -1 for x in the equation x+5=\sqrt{12x+28}.
4=4
Simplify. The value x=-1 satisfies the equation.
x=3 x=-1
List all solutions of x+5=\sqrt{12x+28}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}