Solve for x
x = -\frac{31}{12} = -2\frac{7}{12} \approx -2.583333333
Graph
Share
Copied to clipboard
x+\frac{12}{3}-\frac{4}{3}=\frac{3}{2}-4-x
Convert 4 to fraction \frac{12}{3}.
x+\frac{12-4}{3}=\frac{3}{2}-4-x
Since \frac{12}{3} and \frac{4}{3} have the same denominator, subtract them by subtracting their numerators.
x+\frac{8}{3}=\frac{3}{2}-4-x
Subtract 4 from 12 to get 8.
x+\frac{8}{3}=\frac{3}{2}-\frac{8}{2}-x
Convert 4 to fraction \frac{8}{2}.
x+\frac{8}{3}=\frac{3-8}{2}-x
Since \frac{3}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
x+\frac{8}{3}=-\frac{5}{2}-x
Subtract 8 from 3 to get -5.
x+\frac{8}{3}+x=-\frac{5}{2}
Add x to both sides.
2x+\frac{8}{3}=-\frac{5}{2}
Combine x and x to get 2x.
2x=-\frac{5}{2}-\frac{8}{3}
Subtract \frac{8}{3} from both sides.
2x=-\frac{15}{6}-\frac{16}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{5}{2} and \frac{8}{3} to fractions with denominator 6.
2x=\frac{-15-16}{6}
Since -\frac{15}{6} and \frac{16}{6} have the same denominator, subtract them by subtracting their numerators.
2x=-\frac{31}{6}
Subtract 16 from -15 to get -31.
x=\frac{-\frac{31}{6}}{2}
Divide both sides by 2.
x=\frac{-31}{6\times 2}
Express \frac{-\frac{31}{6}}{2} as a single fraction.
x=\frac{-31}{12}
Multiply 6 and 2 to get 12.
x=-\frac{31}{12}
Fraction \frac{-31}{12} can be rewritten as -\frac{31}{12} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}