Solve for x
x=4
Graph
Share
Copied to clipboard
3\sqrt{x}=-\left(x-10\right)
Subtract x-10 from both sides of the equation.
3\sqrt{x}=-x-\left(-10\right)
To find the opposite of x-10, find the opposite of each term.
3\sqrt{x}=-x+10
The opposite of -10 is 10.
\left(3\sqrt{x}\right)^{2}=\left(-x+10\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{x}\right)^{2}=\left(-x+10\right)^{2}
Expand \left(3\sqrt{x}\right)^{2}.
9\left(\sqrt{x}\right)^{2}=\left(-x+10\right)^{2}
Calculate 3 to the power of 2 and get 9.
9x=\left(-x+10\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x=x^{2}-20x+100
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+10\right)^{2}.
9x-x^{2}=-20x+100
Subtract x^{2} from both sides.
9x-x^{2}+20x=100
Add 20x to both sides.
29x-x^{2}=100
Combine 9x and 20x to get 29x.
29x-x^{2}-100=0
Subtract 100 from both sides.
-x^{2}+29x-100=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=29 ab=-\left(-100\right)=100
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-100. To find a and b, set up a system to be solved.
1,100 2,50 4,25 5,20 10,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 100.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
Calculate the sum for each pair.
a=25 b=4
The solution is the pair that gives sum 29.
\left(-x^{2}+25x\right)+\left(4x-100\right)
Rewrite -x^{2}+29x-100 as \left(-x^{2}+25x\right)+\left(4x-100\right).
-x\left(x-25\right)+4\left(x-25\right)
Factor out -x in the first and 4 in the second group.
\left(x-25\right)\left(-x+4\right)
Factor out common term x-25 by using distributive property.
x=25 x=4
To find equation solutions, solve x-25=0 and -x+4=0.
25+3\sqrt{25}-10=0
Substitute 25 for x in the equation x+3\sqrt{x}-10=0.
30=0
Simplify. The value x=25 does not satisfy the equation.
4+3\sqrt{4}-10=0
Substitute 4 for x in the equation x+3\sqrt{x}-10=0.
0=0
Simplify. The value x=4 satisfies the equation.
x=4
Equation 3\sqrt{x}=10-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}