Solve for m
m=\frac{3x-1}{7}
Solve for x
x=\frac{7m+1}{3}
Graph
Share
Copied to clipboard
3x+2\left(1-5m\right)=3-3m
Multiply both sides of the equation by 3.
3x+2-10m=3-3m
Use the distributive property to multiply 2 by 1-5m.
3x+2-10m+3m=3
Add 3m to both sides.
3x+2-7m=3
Combine -10m and 3m to get -7m.
2-7m=3-3x
Subtract 3x from both sides.
-7m=3-3x-2
Subtract 2 from both sides.
-7m=1-3x
Subtract 2 from 3 to get 1.
\frac{-7m}{-7}=\frac{1-3x}{-7}
Divide both sides by -7.
m=\frac{1-3x}{-7}
Dividing by -7 undoes the multiplication by -7.
m=\frac{3x-1}{7}
Divide 1-3x by -7.
3x+2\left(1-5m\right)=3-3m
Multiply both sides of the equation by 3.
3x+2-10m=3-3m
Use the distributive property to multiply 2 by 1-5m.
3x-10m=3-3m-2
Subtract 2 from both sides.
3x-10m=1-3m
Subtract 2 from 3 to get 1.
3x=1-3m+10m
Add 10m to both sides.
3x=1+7m
Combine -3m and 10m to get 7m.
3x=7m+1
The equation is in standard form.
\frac{3x}{3}=\frac{7m+1}{3}
Divide both sides by 3.
x=\frac{7m+1}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}