Solve for x
x = \frac{25}{13} = 1\frac{12}{13} \approx 1.923076923
Graph
Share
Copied to clipboard
2xx+2x\times 13=2\left(x^{2}+25\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
2x^{2}+2x\times 13=2\left(x^{2}+25\right)
Multiply x and x to get x^{2}.
2x^{2}+26x=2\left(x^{2}+25\right)
Multiply 2 and 13 to get 26.
2x^{2}+26x=2x^{2}+50
Use the distributive property to multiply 2 by x^{2}+25.
2x^{2}+26x-2x^{2}=50
Subtract 2x^{2} from both sides.
26x=50
Combine 2x^{2} and -2x^{2} to get 0.
x=\frac{50}{26}
Divide both sides by 26.
x=\frac{25}{13}
Reduce the fraction \frac{50}{26} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}