Solve for x
x=36
x=4
Graph
Share
Copied to clipboard
\left(x+12\right)^{2}=\left(8\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+24x+144=\left(8\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+12\right)^{2}.
x^{2}+24x+144=8^{2}\left(\sqrt{x}\right)^{2}
Expand \left(8\sqrt{x}\right)^{2}.
x^{2}+24x+144=64\left(\sqrt{x}\right)^{2}
Calculate 8 to the power of 2 and get 64.
x^{2}+24x+144=64x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+24x+144-64x=0
Subtract 64x from both sides.
x^{2}-40x+144=0
Combine 24x and -64x to get -40x.
a+b=-40 ab=144
To solve the equation, factor x^{2}-40x+144 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Calculate the sum for each pair.
a=-36 b=-4
The solution is the pair that gives sum -40.
\left(x-36\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=36 x=4
To find equation solutions, solve x-36=0 and x-4=0.
36+12=8\sqrt{36}
Substitute 36 for x in the equation x+12=8\sqrt{x}.
48=48
Simplify. The value x=36 satisfies the equation.
4+12=8\sqrt{4}
Substitute 4 for x in the equation x+12=8\sqrt{x}.
16=16
Simplify. The value x=4 satisfies the equation.
x=36 x=4
List all solutions of x+12=8\sqrt{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}