Solve for x
x=1
Graph
Share
Copied to clipboard
\left(x+1\right)x+x+1-4=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by x+1.
x^{2}+x+x+1-4=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Use the distributive property to multiply x+1 by x.
x^{2}+2x+1-4=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Combine x and x to get 2x.
x^{2}+2x-3=\left(x+1\right)x+\left(x+1\right)\left(-1\right)
Subtract 4 from 1 to get -3.
x^{2}+2x-3=x^{2}+x+\left(x+1\right)\left(-1\right)
Use the distributive property to multiply x+1 by x.
x^{2}+2x-3=x^{2}+x-x-1
Use the distributive property to multiply x+1 by -1.
x^{2}+2x-3=x^{2}-1
Combine x and -x to get 0.
x^{2}+2x-3-x^{2}=-1
Subtract x^{2} from both sides.
2x-3=-1
Combine x^{2} and -x^{2} to get 0.
2x=-1+3
Add 3 to both sides.
2x=2
Add -1 and 3 to get 2.
x=\frac{2}{2}
Divide both sides by 2.
x=1
Divide 2 by 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}