Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+1-2x^{2}=0
Subtract 2x^{2} from both sides.
-2x^{2}+x+1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-2=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=2 b=-1
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(-2x^{2}+2x\right)+\left(-x+1\right)
Rewrite -2x^{2}+x+1 as \left(-2x^{2}+2x\right)+\left(-x+1\right).
2x\left(-x+1\right)-x+1
Factor out 2x in -2x^{2}+2x.
\left(-x+1\right)\left(2x+1\right)
Factor out common term -x+1 by using distributive property.
x=1 x=-\frac{1}{2}
To find equation solutions, solve -x+1=0 and 2x+1=0.
x+1-2x^{2}=0
Subtract 2x^{2} from both sides.
-2x^{2}+x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2\left(-2\right)}
Square 1.
x=\frac{-1±\sqrt{1+8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1±\sqrt{9}}{2\left(-2\right)}
Add 1 to 8.
x=\frac{-1±3}{2\left(-2\right)}
Take the square root of 9.
x=\frac{-1±3}{-4}
Multiply 2 times -2.
x=\frac{2}{-4}
Now solve the equation x=\frac{-1±3}{-4} when ± is plus. Add -1 to 3.
x=-\frac{1}{2}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{-4}
Now solve the equation x=\frac{-1±3}{-4} when ± is minus. Subtract 3 from -1.
x=1
Divide -4 by -4.
x=-\frac{1}{2} x=1
The equation is now solved.
x+1-2x^{2}=0
Subtract 2x^{2} from both sides.
x-2x^{2}=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-2x^{2}+x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+x}{-2}=-\frac{1}{-2}
Divide both sides by -2.
x^{2}+\frac{1}{-2}x=-\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{2}x=-\frac{1}{-2}
Divide 1 by -2.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Divide -1 by -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Simplify.
x=1 x=-\frac{1}{2}
Add \frac{1}{4} to both sides of the equation.