Solve for x
x=\frac{50}{99}\approx 0.505050505
Graph
Share
Copied to clipboard
3x+1\left(x-\frac{2\times 3+1}{3}\left(5-6x\right)\right)=5\left(1-\frac{9x}{3}\right)
Multiply both sides of the equation by 3.
3x+1\left(x-\frac{6+1}{3}\left(5-6x\right)\right)=5\left(1-\frac{9x}{3}\right)
Multiply 2 and 3 to get 6.
3x+1\left(x-\frac{7}{3}\left(5-6x\right)\right)=5\left(1-\frac{9x}{3}\right)
Add 6 and 1 to get 7.
3x+1\left(x-\frac{7}{3}\times 5-\frac{7}{3}\left(-6\right)x\right)=5\left(1-\frac{9x}{3}\right)
Use the distributive property to multiply -\frac{7}{3} by 5-6x.
3x+1\left(x+\frac{-7\times 5}{3}-\frac{7}{3}\left(-6\right)x\right)=5\left(1-\frac{9x}{3}\right)
Express -\frac{7}{3}\times 5 as a single fraction.
3x+1\left(x+\frac{-35}{3}-\frac{7}{3}\left(-6\right)x\right)=5\left(1-\frac{9x}{3}\right)
Multiply -7 and 5 to get -35.
3x+1\left(x-\frac{35}{3}-\frac{7}{3}\left(-6\right)x\right)=5\left(1-\frac{9x}{3}\right)
Fraction \frac{-35}{3} can be rewritten as -\frac{35}{3} by extracting the negative sign.
3x+1\left(x-\frac{35}{3}+\frac{-7\left(-6\right)}{3}x\right)=5\left(1-\frac{9x}{3}\right)
Express -\frac{7}{3}\left(-6\right) as a single fraction.
3x+1\left(x-\frac{35}{3}+\frac{42}{3}x\right)=5\left(1-\frac{9x}{3}\right)
Multiply -7 and -6 to get 42.
3x+1\left(x-\frac{35}{3}+14x\right)=5\left(1-\frac{9x}{3}\right)
Divide 42 by 3 to get 14.
3x+1\left(15x-\frac{35}{3}\right)=5\left(1-\frac{9x}{3}\right)
Combine x and 14x to get 15x.
3x+15x-\frac{35}{3}=5\left(1-\frac{9x}{3}\right)
Use the distributive property to multiply 1 by 15x-\frac{35}{3}.
18x-\frac{35}{3}=5\left(1-\frac{9x}{3}\right)
Combine 3x and 15x to get 18x.
18x-\frac{35}{3}=5\left(1-3x\right)
Divide 9x by 3 to get 3x.
18x-\frac{35}{3}=5+5\left(-3x\right)
Use the distributive property to multiply 5 by 1-3x.
18x-\frac{35}{3}-5\left(-3x\right)=5
Subtract 5\left(-3x\right) from both sides.
18x-\frac{35}{3}-5\left(-1\right)\times 3x=5
Multiply -1 and 5 to get -5.
18x-\frac{35}{3}+5\times 3x=5
Multiply -5 and -1 to get 5.
18x-\frac{35}{3}+15x=5
Multiply 5 and 3 to get 15.
33x-\frac{35}{3}=5
Combine 18x and 15x to get 33x.
33x=5+\frac{35}{3}
Add \frac{35}{3} to both sides.
33x=\frac{15}{3}+\frac{35}{3}
Convert 5 to fraction \frac{15}{3}.
33x=\frac{15+35}{3}
Since \frac{15}{3} and \frac{35}{3} have the same denominator, add them by adding their numerators.
33x=\frac{50}{3}
Add 15 and 35 to get 50.
x=\frac{\frac{50}{3}}{33}
Divide both sides by 33.
x=\frac{50}{3\times 33}
Express \frac{\frac{50}{3}}{33} as a single fraction.
x=\frac{50}{99}
Multiply 3 and 33 to get 99.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}