Solve for x
x=25
Graph
Share
Copied to clipboard
\sqrt{x}=30-x
Subtract x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(30-x\right)^{2}
Square both sides of the equation.
x=\left(30-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=900-60x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(30-x\right)^{2}.
x-900=-60x+x^{2}
Subtract 900 from both sides.
x-900+60x=x^{2}
Add 60x to both sides.
61x-900=x^{2}
Combine x and 60x to get 61x.
61x-900-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+61x-900=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=61 ab=-\left(-900\right)=900
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-900. To find a and b, set up a system to be solved.
1,900 2,450 3,300 4,225 5,180 6,150 9,100 10,90 12,75 15,60 18,50 20,45 25,36 30,30
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 900.
1+900=901 2+450=452 3+300=303 4+225=229 5+180=185 6+150=156 9+100=109 10+90=100 12+75=87 15+60=75 18+50=68 20+45=65 25+36=61 30+30=60
Calculate the sum for each pair.
a=36 b=25
The solution is the pair that gives sum 61.
\left(-x^{2}+36x\right)+\left(25x-900\right)
Rewrite -x^{2}+61x-900 as \left(-x^{2}+36x\right)+\left(25x-900\right).
-x\left(x-36\right)+25\left(x-36\right)
Factor out -x in the first and 25 in the second group.
\left(x-36\right)\left(-x+25\right)
Factor out common term x-36 by using distributive property.
x=36 x=25
To find equation solutions, solve x-36=0 and -x+25=0.
36+\sqrt{36}=30
Substitute 36 for x in the equation x+\sqrt{x}=30.
42=30
Simplify. The value x=36 does not satisfy the equation.
25+\sqrt{25}=30
Substitute 25 for x in the equation x+\sqrt{x}=30.
30=30
Simplify. The value x=25 satisfies the equation.
x=25
Equation \sqrt{x}=30-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}