Solve for x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Share
Copied to clipboard
x+\frac{7}{6}x+\frac{7}{6}\times \frac{1}{6}=\frac{5}{3}x+\frac{37}{36}
Use the distributive property to multiply \frac{7}{6} by x+\frac{1}{6}.
x+\frac{7}{6}x+\frac{7\times 1}{6\times 6}=\frac{5}{3}x+\frac{37}{36}
Multiply \frac{7}{6} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
x+\frac{7}{6}x+\frac{7}{36}=\frac{5}{3}x+\frac{37}{36}
Do the multiplications in the fraction \frac{7\times 1}{6\times 6}.
\frac{13}{6}x+\frac{7}{36}=\frac{5}{3}x+\frac{37}{36}
Combine x and \frac{7}{6}x to get \frac{13}{6}x.
\frac{13}{6}x+\frac{7}{36}-\frac{5}{3}x=\frac{37}{36}
Subtract \frac{5}{3}x from both sides.
\frac{1}{2}x+\frac{7}{36}=\frac{37}{36}
Combine \frac{13}{6}x and -\frac{5}{3}x to get \frac{1}{2}x.
\frac{1}{2}x=\frac{37}{36}-\frac{7}{36}
Subtract \frac{7}{36} from both sides.
\frac{1}{2}x=\frac{37-7}{36}
Since \frac{37}{36} and \frac{7}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x=\frac{30}{36}
Subtract 7 from 37 to get 30.
\frac{1}{2}x=\frac{5}{6}
Reduce the fraction \frac{30}{36} to lowest terms by extracting and canceling out 6.
x=\frac{5}{6}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=\frac{5\times 2}{6}
Express \frac{5}{6}\times 2 as a single fraction.
x=\frac{10}{6}
Multiply 5 and 2 to get 10.
x=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}