Solve for x
x\geq \frac{5}{8}
Graph
Share
Copied to clipboard
12x+9\leq 4\left(5x-2\right)+12
Multiply both sides of the equation by 12, the least common multiple of 4,3. Since 12 is positive, the inequality direction remains the same.
12x+9\leq 20x-8+12
Use the distributive property to multiply 4 by 5x-2.
12x+9\leq 20x+4
Add -8 and 12 to get 4.
12x+9-20x\leq 4
Subtract 20x from both sides.
-8x+9\leq 4
Combine 12x and -20x to get -8x.
-8x\leq 4-9
Subtract 9 from both sides.
-8x\leq -5
Subtract 9 from 4 to get -5.
x\geq \frac{-5}{-8}
Divide both sides by -8. Since -8 is negative, the inequality direction is changed.
x\geq \frac{5}{8}
Fraction \frac{-5}{-8} can be simplified to \frac{5}{8} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}