Solve for t (complex solution)
\left\{\begin{matrix}t=\frac{w-30x}{x\left(x-2\right)}\text{, }&x\neq 2\text{ and }x\neq 0\\t\in \mathrm{C}\text{, }&\left(w=0\text{ and }x=0\right)\text{ or }\left(w=60\text{ and }x=2\right)\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\frac{w-30x}{x\left(x-2\right)}\text{, }&x\neq 2\text{ and }x\neq 0\\t\in \mathrm{R}\text{, }&\left(w=0\text{ and }x=0\right)\text{ or }\left(w=60\text{ and }x=2\right)\end{matrix}\right.
Solve for w
w=x\left(tx-2t+30\right)
Graph
Share
Copied to clipboard
w=tx^{2}+30x-2xt
Use the distributive property to multiply x by 30-2t.
tx^{2}+30x-2xt=w
Swap sides so that all variable terms are on the left hand side.
tx^{2}-2xt=w-30x
Subtract 30x from both sides.
\left(x^{2}-2x\right)t=w-30x
Combine all terms containing t.
\frac{\left(x^{2}-2x\right)t}{x^{2}-2x}=\frac{w-30x}{x^{2}-2x}
Divide both sides by x^{2}-2x.
t=\frac{w-30x}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
t=\frac{w-30x}{x\left(x-2\right)}
Divide -30x+w by x^{2}-2x.
w=tx^{2}+30x-2xt
Use the distributive property to multiply x by 30-2t.
tx^{2}+30x-2xt=w
Swap sides so that all variable terms are on the left hand side.
tx^{2}-2xt=w-30x
Subtract 30x from both sides.
\left(x^{2}-2x\right)t=w-30x
Combine all terms containing t.
\frac{\left(x^{2}-2x\right)t}{x^{2}-2x}=\frac{w-30x}{x^{2}-2x}
Divide both sides by x^{2}-2x.
t=\frac{w-30x}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
t=\frac{w-30x}{x\left(x-2\right)}
Divide -30x+w by x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}