Solve for s
\left\{\begin{matrix}s=\frac{\left(2u-3v\right)t^{2}}{5w}\text{, }&u\neq \frac{3v}{2}\text{ and }t\neq 0\text{ and }w\neq 0\\s\neq 0\text{, }&\left(t=0\text{ or }u=\frac{3v}{2}\right)\text{ and }w=0\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=-\left(2u-3v\right)^{-\frac{1}{2}}\sqrt{w}\sqrt{5s}\text{; }t=\left(2u-3v\right)^{-\frac{1}{2}}\sqrt{w}\sqrt{5s}\text{, }&s\neq 0\text{ and }u\neq \frac{3v}{2}\\t\in \mathrm{C}\text{, }&w=0\text{ and }u=\frac{3v}{2}\text{ and }s\neq 0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=\sqrt{\frac{5sw}{2u-3v}}\text{; }t=-\sqrt{\frac{5sw}{2u-3v}}\text{, }&\left(s>0\text{ or }u>\frac{3v}{2}\text{ or }w\geq 0\right)\text{ and }u\neq \frac{3v}{2}\text{ and }\left(s>0\text{ or }w\leq 0\text{ or }u<\frac{3v}{2}\right)\text{ and }\left(u>\frac{3v}{2}\text{ or }w\leq 0\text{ or }s<0\right)\text{ and }s\neq 0\text{ and }\left(u<\frac{3v}{2}\text{ or }s<0\text{ or }w\geq 0\right)\\t\in \mathrm{R}\text{, }&w=0\text{ and }u=\frac{3v}{2}\text{ and }s\neq 0\end{matrix}\right.
Share
Copied to clipboard
w\times 5s=t^{2}\left(2u-3v\right)
Variable s cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 5s.
w\times 5s=2t^{2}u-3t^{2}v
Use the distributive property to multiply t^{2} by 2u-3v.
5ws=2ut^{2}-3vt^{2}
The equation is in standard form.
\frac{5ws}{5w}=\frac{\left(2u-3v\right)t^{2}}{5w}
Divide both sides by 5w.
s=\frac{\left(2u-3v\right)t^{2}}{5w}
Dividing by 5w undoes the multiplication by 5w.
s=\frac{\left(2u-3v\right)t^{2}}{5w}\text{, }s\neq 0
Variable s cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}