v d v = a d x
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{v^{2}}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\left(v=0\text{ and }x=0\right)\text{ or }d=0\end{matrix}\right.
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&v=-\sqrt{a}\sqrt{x}\text{ or }v=\sqrt{a}\sqrt{x}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{v^{2}}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&\left(v=0\text{ and }x=0\right)\text{ or }d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(v=0\text{ and }a=0\text{ and }x=0\right)\text{ or }\left(a\geq 0\text{ and }x\geq 0\text{ and }|v|=\sqrt{ax}\right)\text{ or }\left(x\leq 0\text{ and }a\leq 0\text{ and }|v|=\sqrt{ax}\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
v^{2}d=adx
Multiply v and v to get v^{2}.
adx=v^{2}d
Swap sides so that all variable terms are on the left hand side.
dxa=dv^{2}
The equation is in standard form.
\frac{dxa}{dx}=\frac{dv^{2}}{dx}
Divide both sides by dx.
a=\frac{dv^{2}}{dx}
Dividing by dx undoes the multiplication by dx.
a=\frac{v^{2}}{x}
Divide v^{2}d by dx.
v^{2}d=adx
Multiply v and v to get v^{2}.
v^{2}d-adx=0
Subtract adx from both sides.
-adx+dv^{2}=0
Reorder the terms.
\left(-ax+v^{2}\right)d=0
Combine all terms containing d.
\left(v^{2}-ax\right)d=0
The equation is in standard form.
d=0
Divide 0 by v^{2}-ax.
v^{2}d=adx
Multiply v and v to get v^{2}.
adx=v^{2}d
Swap sides so that all variable terms are on the left hand side.
dxa=dv^{2}
The equation is in standard form.
\frac{dxa}{dx}=\frac{dv^{2}}{dx}
Divide both sides by dx.
a=\frac{dv^{2}}{dx}
Dividing by dx undoes the multiplication by dx.
a=\frac{v^{2}}{x}
Divide v^{2}d by dx.
v^{2}d=adx
Multiply v and v to get v^{2}.
v^{2}d-adx=0
Subtract adx from both sides.
-adx+dv^{2}=0
Reorder the terms.
\left(-ax+v^{2}\right)d=0
Combine all terms containing d.
\left(v^{2}-ax\right)d=0
The equation is in standard form.
d=0
Divide 0 by v^{2}-ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}